
Xihe: A 3D Vision-based Lighting Estimation Framework for
Mobile Augmented Reality

Yiqin Zhao
Worcester Polytechnic Institute

yzhao11@wpi.edu

Tian Guo
Worcester Polytechnic Institute

tian@wpi.edu

ABSTRACT

Omnidirectional lighting provides the foundation for achieving

spatially-variant photorealistic 3D rendering, a desirable property

for mobile augmented reality applications. However, in practice,

estimating omnidirectional lighting can be challenging due to limi-

tations such as partial panoramas of the rendering positions, and

the inherent environment lighting and mobile user dynamics. A

new opportunity arises recently with the advancements in mobile

3D vision, including built-in high-accuracy depth sensors and deep

learning-powered algorithms, which provide the means to better

sense and understand the physical surroundings. Centering the key

idea of 3D vision, in this work, we design an edge-assisted frame-

work called Xihe to provide mobile AR applications the ability to

obtain accurate omnidirectional lighting estimation in real time.

Specifically, we develop a novel sampling technique that effi-

ciently compresses the raw point cloud input generated at the

mobile device. This technique is derived based on our empirical

analysis of a recent 3D indoor dataset and plays a key role in our 3D

vision-based lighting estimator pipeline design. To achieve the real-

time goal, we develop a tailored GPU pipeline for on-device point

cloud processing and use an encoding technique that reduces net-

work transmitted bytes. Finally, we present an adaptive triggering

strategy that allows Xihe to skip unnecessary lighting estimations

and a practical way to provide temporal coherent rendering integra-

tion with the mobile AR ecosystem. We evaluate both the lighting

estimation accuracy and time of Xihe using a reference mobile ap-

plication developed with Xihe’s APIs. Our results show that Xihe

takes as fast as 20.67ms per lighting estimation and achieves 9.4%

better estimation accuracy than a state-of-the-art neural network.

CCS CONCEPTS

· Computing methodologies→Mixed / augmented reality; ·

Human-centered computing→Ubiquitous andmobile com-

puting systems and tools; · Computer systems organization

→ Distributed architectures.

KEYWORDS

mobile augmented reality; lighting estimation; 3D vision; deep

learning; edge inference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8443-8/21/06. . . $15.00
https://doi.org/10.1145/3458864.3467886

ACM Reference Format:

Yiqin Zhao and Tian Guo. 2021. Xihe: A 3DVision-based Lighting Estimation

Framework for Mobile Augmented Reality. In The 19th Annual International

Conference on Mobile Systems, Applications, and Services (MobiSys ’21), June

24śJuly 2, 2021, Virtual, WI, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3458864.3467886

1 INTRODUCTION

Augmented reality (AR), overlaying virtual objects in the user’s

physical surrounding, has the promise to transformmany aspects of

our lives, including tourism, education, and online shopping [10, 15].

The key for AR to success in these application domains heavily

relies on the ability of photorealistic rendering, a feature which can

be achieved with access to omnidirecitional lighting information at

rendering positions [6]. For example, a virtual table should ideally

be rendered differently depending on the user-specified render-

ing positionsÐreferred to as spatially-variant rendering, to more

accurately reflect the environment lighting and more seamlessly

blending the virtual and physical worlds.

However, obtaining such lighting information necessary for

spatially-variant photorealistic rendering is challenging in mobile

devices. Specifically, even high-end mobile devices such as iPhone

12 lack access to 360◦ panorama of the rendering position. Even

though with explicit user cooperation, it is possible to obtain the

360◦ panorama of the observation position via the use of ambient

light sensors and front-/rear-facing cameras. Directly using the

lighting information at the observation position, i.e., where the

user is at, to approximate the lighting at the rendering position,

i.e., where the virtual object will be placed, can lead to undesirable

visual effects due to the inherent lighting spatial variation [7].

One promising way to provide accurate omnidirectional lighting

information to mobile AR applications is via 3D vision support.

With the recent advancement in mobile 3D vision including built-in

high-accuracy Lidar sensors [14] and low-complexity high-accuracy

deep learning models [23, 32, 33], we are bestowed upon a new op-

portunity to provide spatially-variant photorealistic rendering! In

this work, we design the first 3D-vision based framework Xihe

that provides mobile AR applications the ability to obtaining ac-

curate omnidirectional lighting estimation in realtime. Our design

can be broadly categorized into three parts: (i) algorithm and sys-

tem design to support spatially-variant estimation; (ii) per-frame

performance optimization to achieve the real-time goal; and (iii)

multi-frame practical optimization to further reduce network cost

and to integrate with existing rendering engines for temporal co-

herent rendering. We implement the framework Xihe on top of

Unity3D and AR Foundation as well as a proof-of-concept refer-

ence AR application that utilizes Xihe’s APIs. Figure 1 compares

the rendered AR scenes using Xihe and prior work [21].

ar
X

iv
:2

10
6.

15
28

0v
1

 [
cs

.C
V

]
 3

0
M

ay
 2

02
1

https://doi.org/10.1145/3458864.3467886
https://doi.org/10.1145/3458864.3467886

MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA Y. Zhao and T. Guo

(a) Left: ARKit vs. right: GLEAM (obtained directly from [21]) (b) Left: ARKit vs. right: Xihe

Figure 1: Rendered AR scenes. Both GLEAM and Xihe achieve better visual effect compared to ARKit. Xihe better captures the spatially-

variant lighting difference without needing the physical probe, compared to GLEAM [21]. Note we compared to ARKit’s ambient light sensor

based lighting estimation.

To support the key goal of spatially-variant lighting estimation,

we design an end-to-end pipeline for 3D data processing, under-

standing, and management. Specifically, we devise a novel sampling

technique called unit sphere-based point cloud technique to prepro-

cess raw 3D data in the format of point cloud. This technique is

derived based on our empirical analysis using a recent 3D indoor

dataset [33]; our analysis shows the correlation between the incom-

plete observation data (i.e., not 360◦ panorama) and the lighting

estimation accuracy. Further, we redesign a recently proposed 3D

vision-based lighting estimation pipeline [33] by leveraging our

unit sphere-based point cloud sampling technique to transform

raw point clouds to compact representations while preserving the

observation completeness. To better support mobile devices of het-

erogeneous capacity and simplify the client design, we centralize

the tasks, including point cloud and lighting inference management,

into a stateful server design. Our edge-assisted design also facili-

tates sharing among different mobile users and therefore provides

opportunities to improve lighting estimation with extrapolated point

cloud data, e.g., via merging and stitching different observation data

to increase the completeness.

To achieve the real-time goal, we develop a tailored GPU pipeline

for processing point clouds on the mobile device and use an encod-

ing technique that reduces network transmitted bytes. Specifically,

we leverage the property of point cloud in which the computa-

tion for each point can be parallelized and devise a strategy that

trade-offs storage to improve runtime performance. In essence,

we pre-generate densely sampled sphere coordinates in the unit

sphere-based point cloud and pre-compute their distances to an-

chorsÐa set of uniformly distributed surface points in a unit sphere.

At runtime, instead of trying to search for the closest anchor to

each projected point, we simply search within the densely sam-

pled sphere coordinates. We refer to these densely sampled sphere

coordinates as acceleration grids. Further, we encode each colored

anchor of the unit sphere-based point cloud with unsigned 8bits

int and half-precision 16bits float where appropriate based on the

practical characteristics such as common image format of LDR and

the depth sensor precision. Our unit sphere-based point cloud de-

sign also allows easy stripping of unnecessary data by removing

any uninitialized anchors ,i.e., anchors that are not colored due to

incomplete raw observation point cloud.

Finally, we present an adaptive triggering strategy that allows

Xihe to skip unnecessary lighting estimations and a practical way

to provide temporal coherent rendering integration with the AR

ecosystem. The key idea of the triggering strategy is to leverage

an easy-to-obtain and fast-to-compute metric to determine directly

on the mobile device whether the lighting condition has changed

sufficiently to warrant a new lighting estimation at the edge. We use

a sliding window-based approach that compares the unit sphere-

based point cloud changes between consecutive frames. To achieve

temporal-coherent visual effects, we leverage additional mobile

sensors including ambient lighting and gyroscope to better match

the lighting estimation responses with the current physical sur-

roundings. We also detail steps to leverage a popular rendering

engine to apply the spatially-variant lighting on virtual objects.

Spatially-variant lighting information can be traditionally ex-

tracted using physical probes [6, 21], and more recently estimated

with deep neural networks [7, 8, 28, 33]. For example, Debevec et

al. demonstrated that spatially-variant lighting can be effectively

estimated by using reflective sphere light probes to extrapolate

camera views. More recently, Prakash et al. developed a mobile

framework that provides real-time lighting estimation using phys-

ical probes [21]. On a different vein, new deep learning-based

approaches that do not require the use of physical probes have

demonstrated efficiency in estimating spatially-variant lighting.

The early efforts mostly focus on model innovation but still incur

high computational complexity, making them ill-suited to run on

mobile devices [7, 8, 28]. Until very recently, Zhao et al. proposed

a lightweight 3D vision-based approach that takes advantage of

new mobile depth sensors and shows promise of being mobile-

friendly [33]. Our work leverages the advancement of mobile 3D

vision and presents the first framework that supports accurate om-

nidirectional lighting estimation in real time via algorithm and

system co-design. Moreover, our work does not require the use

of physical reflective probes at runtime, thus can support a wider

range and more practical AR application scenarios.

Our main contributions of this paper are:

• We design and implement a 3D vision-based framework Xihe

that allows mobile AR applications to obtain spatially-variant

lighting estimation and to achieve temporal-coherent rendering,

fast and accurately. The relevant research artifact is available at:

https://github.com/cake-lab/Xihe.

• We propose a novel point cloud sampling technique that effec-

tively compresses the observation point cloud without impact-

ing the estimation accuracy. This sampling technique is used in

conjunction with a lightweight neural network to provide the

spatially-variant lighting estimation.

• To achieve the real-time goal, we propose two per-frame optimiza-

tions, namely a tailored GPU pipeline for point cloud operations

on the mobile devices and a practical data encoding scheme. This

allows Xihe generate lighting estimations as fast as 20.67ms. We

https://github.com/cake-lab/Xihe

Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile Augmented Reality MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA

design an adaptive triggering strategy that effectively reduces up

to 76.24% estimation requests by allowing Xihe client to identify

lighting condition changes directly on the mobile devices.

• We conduct a comprehensive evaluation with a real-world 3D

indoor RGB-D dataset on several mobile devices and network

conditions and show that Xihe can achieve better visual effects

than two existing approaches, i.e., GLEAM [21] and ARKit [13].

Further, we also present a detailed performance breakdown of

Xihe under different configurations and use cases, reporting mo-

bile, network, and edge time. Our study reveals a number of

important factors such as number of anchors and estimation po-

sitions. Lastly, our lab-based evaluation showcases Xihe’s ability

to effectively generate lighting estimations by adapting to both

environment lighting and user movement dynamics.

2 PROBLEM AND SOLUTION OVERVIEW

In this paper, we set out to address the key problem of providing

spatially-variant photorealistic rendering in the context of mobile

AR. Photorealistic rendering at a high level is about displaying life-

like virtual 3D objects which mobile users cannot easily distinguish

from physical objects. The key challenge to achieving photoreal-

istic rendering lies in obtaining the omnidirectional lighting of a

geometric space where the virtual objects will be displayed. Larger

objects therefore require more lighting information at different

points in the geometric space. The geometric center of the virtual

object, referred to as the placement position, is often assumed to

be specified by the user at runtime. A placement position can be

extrapolated to multiple estimation positions where each position

corresponds to a lighting representation, e.g., SH coefficients. The

advent of 3D vision, the ability to perceive both color and depth

information, creates a new opportunity to transfer the measurable

lighting information at the observation position to the placement

position i.e. rendering positions.

Challenges. We leverage the key idea of 3D vision, and address

three key challenges in designing a 3D vision-based lighting estima-

tion framework called Xihe. The first challenge lies in accurately

representing the spatially-variant lighting given the inherent con-

straints of mobile AR scenarios including limited field-of-view, user

mobility, and environment lighting changes. The second challenge

is to provide such accurate lighting estimation fast enough so that

rendering engines can utilize this information for each frame if

necessary. The third challenge is to provide temporal-coherent ren-

dering that considers cross-frame visual harmony when utilizing

estimated lighting information.

Solution Overview. In this work, we design a 3D-vision based

framework Xihe that provides mobile AR applications the ability

to obtaining accurate omnidirectional lighting estimation in real

time. See Figure 6 for an architecture design of Xihe. Our design

can be broadly categorized into three intertwined parts. We first

introduce the algorithm and system design to support spatially-

variant estimation in Section 3 and then describe our per-frame

performance optimization to achieve real-time goal in Section 4.1.

We further describe our cross-frame practical optimization to reduce

network cost and to integrate with a popular rendering engine for

temporal-coherent rendering in Section 4.2.

−1.0
−0.5

0.0
0.5

1.0 −1.0

−0.5

0.0

0.5
1.0

−1.0

−0.5

0.0

0.5

1.0

(a) Uniform distribution.

−1.0
−0.5

0.0
0.5

1.0 −1.0

−0.5

0.0

0.5
1.0

−1.0

−0.5

0.0

0.5

1.0

(b) Non-uniform distribution.

Figure 2: Impact of anchor point distributions on observation

completeness.

3 SPATIALLY-VARIANT ESTIMATION

Spatially-variant lighting allows representation of lighting at dif-

ferent world positions. As such it has the promise to provide more

photorealistic renderings of virtual objects, which is especially im-

portant in the realm of augmented reality. For example, when used

in a furniture shopping app, spatially-variant lighting can more

effectively render a piece of couch with different outlooks depend-

ing on the user’s physical environment (well-lit room or darker

room), the rendering position, and the couch size. Figure 1 visual-

izes rendering examples with and without spatially-variant lighting

information.

3.1 Unit-Sphere based Point Cloud Sampling

Xihe enables real-time efficient lighting estimation for mobile de-

vices with 3D vision-based deep learning model that takes point

cloud generated from on-device camera captured RGB-D image as

input. Such point cloud data is usually large in size and can contain

redundant information [27]. Therefore, down-sampling point cloud

is beneficial to computation and network efficiency. However, di-

rectly down-sampling the raw point cloud using techniques such

as uniform sampling can negatively impact lighting estimation

accuracy. In this section, we present our novel unit sphere-based

point cloud sampling technique which preserves observation field-

of-view (FoV) as much as possible. Our design is informed by an

empirical analysis that demonstrates the negative correlation be-

tween observation completeness and lighting estimation accuracy.

3.1.1 Impact of Incomplete Observation Data. To study the poten-

tial impact of incomplete observation data on lighting estimation

accuracy, we first propose an entropy-based metric to measure the

point cloud observation completeness. We define the observation

completeness as the percentage of colored anchors when project-

ing a point cloud to unit sphere surface. Further, anchor points are

defined as a set of uniformly distributed surface points in a unit

sphere 𝑂 . Intuitively, the observation completeness depends on

both the points distribution (𝐷) and anchor distribution (𝐴). We

define the joint entropy 𝐻 (𝐷,𝐴) as:

H(𝐷,𝐴) = −
∑︁

𝑖∈𝑆

𝑖∑︁

𝑗=1

P(𝑑𝑖 𝑗 , 𝑎𝑖) log2 [P(𝑑𝑖 𝑗 , 𝑎𝑖)] . (1)

where 𝑃 (𝑑𝑖 𝑗 , 𝑎𝑖) is the joint probability of projecting points into

a unit sphere with 𝑖 anchor point, and 𝑆 is a set of possible anchor

MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA Y. Zhao and T. Guo

0 10 20 30 40 50 60
Entropy

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob
ab
ilit
y

(a) Entropy distribution.

10 20 30 40 50 60
Observation Completeness (Entropy)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Es
tim

at
io

n
Ac

cu
ra

cy
 (M

SE
)

(b) Entropy vs. accuracy.

Figure 3: Observation-preserving metric empirical analysis.

sizes (i.e., number of anchor points). In this work, we choose 𝑆 =

{2𝑘 |1 ≤ 𝑘 ≤ 12}. By using the Equation (1), we can succinctly

measure the point cloud observation completeness. The higher the

entropy value, the more complete the observation. Additionally,

it allows us to easily distinguish the observation completeness

for point clouds of the same size. For example, even though the

two projected point clouds have the same number of points, the

projected point cloud shown in Figure 2(a) is considered to be more

complete than the one shown in Figure 2(b).

Next, we leverage a recently proposed state-of-the-art 3D vision

based lighting estimation algorithm and its point cloud dataset [33]

to correlate observation completeness with estimation accuracy.

The raw point clouds, each has around 82K points, were first uni-

formly downsampled to 1280 points. We then trained a model (see

Section 6.5 for training setup details) based on the original paper’s

description. Lastly, we obtained the lighting estimation error, rep-

resented as Mean Squared Error (MSE), by evaluating the trained

model on each point cloud and compare the results to ground truth.

Figure 3(a) depicts the entropy distribution of all raw point clouds.

Figure 3(b) shows a negative correlation between the observation

completeness measured by 𝑒 and estimation accuracy. In conclusion,

we empirically observed that the coverage observation complete-

ness is the key impact factor to lighting estimation accuracy.

3.1.2 Observation Point Cloud Downsampling. To effectively sam-

ple point cloud, we design a novel point cloud sampling method

called unit sphere-based point cloud sampling. It first projects every

point in a point cloud 𝑃 onto a unit sphere 𝑂 , defined as 𝑓 (𝑃,𝑂),

then find the nearest anchor point for each projected point. By

establishing the relationship between each point from 𝑃 and 𝑂 , 𝑓

outputs a point cloud distribution 𝐷 . Finally, we downsample 𝑃

with a nearest point selection that approximates the depth culling

process [1]. That is, 𝑃 is downsampled by selecting the nearest

points, i.e., points with the shortest 3D Euclidean distance to the

sphere origin, from 𝐷 to color corresponding anchor points in 𝑂 .

Figure 4 provides an example walkthrough of our unit sphere-

based point cloud sampling. Considering three points (𝑝1, 𝑝2, 𝑝3) in

the original point cloud, and their corresponding projected points

(𝑝 ′1, 𝑝
′
2, 𝑝

′
3). Each projected point is then matched to an anchor that

is closest to itself. We refer to these matched anchors as nearest

neighbors. In this example, 𝑝 ′1 will be matched to 𝑎1 while 𝑝
′
2 and

𝑝 ′3 will both be matched to 𝑎2. Without loss of generality, if 𝑝 ′1 is

the only projected point that 𝑎1 is assigned as the nearest neighbor,

then 𝑎1 will be initialized with the RGB values of 𝑝 ′1 and 𝐷 (𝑝 ′1, 𝑜)Ð

the distance between 𝑝 ′1 and the sphere origin 𝑜 . Similarly, if 𝑝 ′2 and

𝑝 ′3 are the only projected points that 𝑎2 is assigned, and 𝑝
′
2 is closer

to the sphere origin than 𝑝 ′3 is, 𝑎1 will be initialized with the RGB

values of 𝑝 ′2 and 𝐷 (𝑝 ′2, 𝑜).

In practice, the points set 𝑃 is determined at runtime by configu-

rations and camera hardware while the size of 𝑂 is a configurable

system parameter; the ratio
𝑠𝑖𝑧𝑒 (𝑃)
𝑠𝑖𝑧𝑒 (𝑂)

represents the down-sampling

ratio. In other words, we will leverage the unit sphere-based point

cloud as the basis for estimating the spatially-variant lighting infor-

mation instead of directly using the observed point cloud. In an AR

session, we need to perform several consecutive unit sphere-based

point cloud sampling within a small time span for each estimation

position, as will be described in section 4.2.1. The unit sphere-based

point cloud for each estimation position will likely only be partially

initialized, due to incomplete environment observation.

We will store the unit sphere-based point cloud in a custom

designed data structure, represented as a 4D vector (the RGB values

and the 3D Euclidean distance between the projected points and the

sphere origin). This data structure design has two major advantages.

First, sphere anchor positions can be pre-computed ahead of time.

As such, our data structure only needs to store anchors in an ordered

array with each index corresponds to an anchor position. This

design also presents an opportunity to speedup Xihe’s triggering

strategy using pre-computed neighbors for each anchor, as will be

described in Section 4.2.1. Second, storing unit sphere-based point

cloud using this data structure allows Xihe to extract both 3D space

positions and colors at viewing directions for estimation positions.

3.1.3 Downsampled Point Clouds for Virtual Objects. Xihe sup-

ports estimation positions that are specified via Xihe’s APIs and

can perform unit sphere-based point cloud sampling at each es-

timation position. Additionally, Xihe also provides a simplified

workflow that automatically assigns estimation positions when a

virtual object is placed to the scene. Specifically, given a virtual

object’s placement position (e.g., specified by the user), Xihe will

first designate the placement position as one estimation position

and subsequently generate multiple estimation positions based on

the object size. In other words, Xihe can support multiple light-

ing estimation requests, the response of each is represented as SH

coefficients, for a given object. However, due to current mobile

rendering engine limitations, e.g., in the case of mobile Unity3D,

Xihewill only render each object with one set of SH coefficients. To

circumvent this limitation, AR developers using Xihe can either de-

compose the large object into smaller ones or customize rendering

shaders to take advantage of multiple sets of SH coefficients.

3.2 3D Vision-based Estimation Pipeline

Another key design to support spatially-variant lighting comes

down to an efficient algorithm that can extract and estimate lighting

information from an incomplete environment point cloud. As depth

sensors such as Lidar start to be equipped with mobile devices, it

is now possible to leverage 3D vision-based algorithms for Mobile

AR applications.

However, given that mobile 3D vision is in its infancy, there have

been very few works in mobile-friendly 3D vision-based lighting

estimation techniques [26, 33]. We choose the state-of-the-art 3D

vision based lighting estimation model PointAR [33] as the building

block for designing a new lighting estimation neural network that

works well with unit sphere-based point cloud. Briefly, PointAR is

Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile Augmented Reality MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA

RGB-D

Camera Image

(a) Camera input. (b) Raw points. (c) Point projection. (d) Anchor initialization.

2.230.1 0.5 0.8

00 0 0

1.230.7 0.2 0.5

1.230.70 0.2 0.5

2.230.12 0.5 0.8

Strip

…….

(e) Encoding.

Figure 4: An example of unit sphere-based point cloud sampling and encoding.

a two-staged neural network pipeline that consists of: (i) a point

cloud transformation to simulate the camera movement from the

observation position to the rendering position; (ii) a point cloud-

based compact deep learning model. Our practical XiheNet is

designed by integrating our novel unit sphere-based point cloud

sampling technique, as described in Section 3.1.2, into the first stage.

To train the XiheNet model, we first generate six training/test

datasetsÐwith the following number of anchors: [512, 768, 1024,

1280, 1536, 2048]Ðeach consists of 608k/2037 unit sphere-based

point cloud from the PointAR RGB-D dataset. Then, we extract the

ground truth lighting information, represented as SH coefficients

from both LDR and HDR environment maps. The resulting data

item is in the form of a downsampled point cloud and the corre-

sponding SH coefficients. For LDR-based and HDR-based datasets,

we train six instances of XiheNet to study the performance and

estimation accuracy trade-offs. As we later observe that XiheNet

models trained with LDR-based datasets lead to better visual effects

than that of HDR-based datasets; for the remainder of the paper, we

will report results using XiheNet trained on LDR-based datasets.

Xihe outputs SH coefficients as an omnidirectional representa-

tion of environment lighting at a single world position for rendering.

If directly using image-based lighting estimation models [8, 28], one

needs to post-process to correctly orient estimated SH coefficients

since the 3D world orientation cannot be represented on the image

input. Our XiheNet guarantees the orientation constant [33] by

explicitly considers the world space point cloud and estimates SH

coefficients at the same orientation.

3.3 Edge-assisted Resource Sharing

3.3.1 Point Cloud Management. Naively preserving and managing

time-series downsampled point clouds on mobile devices can be

harmful to overall system performance as it can consume too much

device memory. Therefore, Xihe proposes to use a stateful edge-

based point cloud management design. Moreover, we abstract Xihe

client as a point cloud provider to handle mobile heterogeneity, like

camera parameters, through adapters.

We design the Xihe server to manage the unit sphere-based

point cloud for each estimation position. Edge data will be updated

throughout the AR session as new lighting estimation requests

come in. Currently our XiheNet can produce highly accurate esti-

mations even with per-frame data that have a number of uninitial-

ized anchors. Based on our empirical analysis between observation

completeness and the estimation accuracy, one practical way to

further improve the estimation accuracy is to leverage multiple

UnitSphere
Sampling

PointCloud
Generation

MergeBuffer Trigger MergeBuffer

TemporaryBuffer

PersistenceBuffer

Figure 5: Xihemobile GPU processing pipeline.

frames to progressively complete the unit sphere-based point cloud,

i.e., with more colored anchors. Thus, Xihe server manages the

collected environment point cloud in an accumulative fashion and

merges the point cloud with data associated with newly triggered

requests. As such, we can then augment the unit sphere-based point

cloud sent with each estimation request with historical data for

improving observation completeness. Such augmentation is partic-

ularly useful when environment observation data is shared among

multiple estimation positions or clients in the same AR session.

3.3.2 Lighting Estimation Management. Lighting estimation is in-

herently latency sensitive due to the strict latency requirement. In

the context of mobile AR, rendering engine typically targets 30fps

refresh rate, which corresponds to refresh approximately 33.33ms

per frame. Ideally lighting estimation should be performed at each

frame to achieve best accuracy. However, for deep learning-based

estimation algorithms, fulfilling such requirement on mobile de-

vices can be very challenging given the resource constraints and

the likelihood of sharing on-device computation resources with

tasks like rendering.

To address the low latency requirement and better support our

overall vision of supporting multi-users AR sessions and multi-

objects rendering, we design Xihe to run the inference execution

on a GPU-accelerated edge server. A strategically provisioned edge

can provide a low-latency and high-bandwidth connection between

the mobile devices and the server [20], as well as the potential

to batch inference requests. By using edge-based deep learning

inference, Xihe has the potential to support more complex model

and achieve much lower computation latency, e.g., by leveraging

the powerful edge resources. The Xihe server will use the merged

point cloud as the input to the 3D vision-based estimator and send

back the estimation result in SH coefficients to Xihe client.

4 FAST AND ACCURATE ESTIMATION

Continuously processing point cloud data directly on mobile CPU

can be time consuming, thus might violating the real-time goal.

For example, a RGB-D image captured on a iPad Pro with the max

resolution of 256x192 corresponds to 49k raw points. Fortunately,

MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA Y. Zhao and T. Guo

operations on point clouds can naturally be parallelized at per-

point level. We explicitly assemble as many operations as possible

to run onmobile GPU to reduce the CPU-GPU communication over-

head for achieving the best performance; the processing pipeline

is shown in Figure 5. Further, as constantly sending all the RGB-D

data over the network to the edge can be costly and might not

be necessary, we devise an adaptive triggering strategy that skips

inference requests if the environment lighting conditions do not

change substantially. The triggering component (see Section 4.2.1)

decides whether Xihe should offload the point cloud sample to the

edge sever for inference or store it into a temporary buffer.

4.1 Per-frame Real-time Optimization

4.1.1 Accelerating Point Cloud Sampling. Our processing pipeline,

as shown in Figure 5, starts with generating point cloud data from

a camera captured RGB-D image feed, and performs generation

at a pre-configured refresh rate. By leveraging GPU computing,

our point cloud generation code can be fully parallelized for com-

mon RGB-D image resolutions, e.g., 256x192 in the case of Lidar-

equipped iPad. Each generation outputs a point cloud of the world

environment that is captured in the current camera view.

Then, we apply unit sphere-based point cloud sampling to the

generated point cloud. However, naively using this sampling tech-

nique is computationally intensive, as it runs inΘ(size(𝑃)∗size(𝑂))

time. Although it is possible to parallelize both point processing

and anchor searching, the number of required GPU threads can

exceed the maximum support. For example, if we were to fully

parallelize the sampling process, i.e., using one GPU thread for

searching each point-anchor pair, on a point cloud with 49k points

and 1280 anchors, we will need about 62M GPU threads, while the

maximum supported GPU thread group size on mobile Unity3D

platform is 65535. Although partially parallelizing the sampling,

e.g., running the neareast anchor search for each point on a GPU

thread, may comply with the current mobile GPU requirement,

the execution time of each thread will be elongated. Therefore,

we propose an optimization method for reducing the computation

resource requirement of this sampling technique.

Specifically, we propose to build a 2D acceleration grid that uses

densely pre-sampled points and pre-computed results to reduce

the neareast anchor searching time. Specifically, we first densely

sample a set of points on the unit sphere based on quantizing the

spherical coordinates polar angels 𝜃 and 𝜙 . Then, we pre-compute

the nearest anchor for all the densely sampled points and store the

corresponding anchor index in the acceleration grid. At runtime,

for each projected point, we first convert its cartesian coordinate to

spherical coordinate and then apply the same quantization to match

the point to a densely sampled point in the grid. The key advantage

of doing so is that pre-sampled points can be stored as a 2D array,

and indexed with spherical coordinates at runtime cheaply.

Note that using our proposed acceleration grid may introduce

sampling errors as in essence this approach presents the entire

sphere surface with discrete sampled points. Intuitively, the more

points the grid has, the better the approximation. We empirically

show that given a unit sphere-based point cloud with 1280 anchors,

using a pre-computed grid of 1024x512 points allow 97% projected

points match to their neareast anchors and only incur a negligible

estimation error. More details will be presented in Section 6.3. After

a new unit sphere-based point cloud data is sampled, Xihe client

will continue the GPU pipeline execution by merging the newly

generated data with historical data in the temporary buffer using an

extrapolation operation. The merging operation is an anchor-wise

copy operation between two buffers, and will always overwrite old

data with new one.

An alternative approach to accelerate unit sphere-based point

cloud sampling is to build a bounding volume hierarchyÐa tech-

nique to accelerate ray tracing in real-time rendering [11]Ðby prop-

erly subdivising the sphere surface to reduce the search space.

However, leveraging such subdivision methods is nontrivial as one

has to balance a number of factors such as the sphere surface divid-

ing time, division access time, and total search time. We leave this

exploration as part of future work.

4.1.2 Unit Sphere-based Point Cloud Encoding. Xihe promises the

low-latency network communication by leveraging above-mentioned

compact point cloud data structure with byte-optimized encoding

method. When an estimation request is triggered, Xihe client sends

the corresponding encoded unit sphere-based point cloud as a byte-

encoded HTTP packet to the Xihe server. Our encoding consists of

two steps: the striping step which removes all uninitialized anchors

from the unit sphere-based point cloud and the byte representation

step which stores each point with fewer bits.

Specifically, instead of storing each point of the downsampled

point cloud with four 32bits single precision floats, we use 8bits

unsigned int and 16bits half-precision float to represent each point.

Though the original format is more precise to calculate and per-

forms better as it aligns to the GPU bus transaction size, such data

format uses redundant data bytes. For example, when dealing with

low dynamic range (LDR) camera images, 8bits data is usually suf-

ficient to preserve the useful information. Also, due to limitations

such as depth sensor precision and camera visible area size, the

distance information can be presented with 16bits half precision

float. Lastly, for each colored point, we use an extra 16bits to store

their indices.

Our encoding scheme can lead to significantly savings both in

terms of per-request and per-pixel data size. For example, for a

unit sphere-based point cloud generated from a LDR camera image,

using Xihe to encode the request data only needs 7 bytes, about

43.75% of the size if we encodewith the original four single precision

floats. Comparing to directly sending the raw RGB-D image (5 bytes

per pixel), Xihe reduces approximately 98.3% data usage by only

needing to send on average 4249 bytes for an RGB-D image with

256x192 resolution. This results in both less network data transfer

and potentially less network time.

4.2 Cross-frame Optimization

4.2.1 Adaptive Estimation Triggering. Most modern camera sys-

tems provide high refresh rate, e.g. 30fps or higher. Estimating

scene lighting at the same frequency for each frame can be benefi-

cial for achieving good visual results, but also consume significant

computation and energy resources. Additionally, it might not be

necessary to update lighting information this frequently as envi-

ronment lighting conditions might not change at this rate. To avoid

sending unnecessary estimation requests to the edge, we design a

Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile Augmented Reality MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA

triggering strategy that allows Xihe client to efficiently compare

lighting changes on mobile devices.

Designing effective triggering strategies involve addressing two

major challenges: (i) potential camera movements between con-

secutive frames; (ii) low latency requirement. The first challenge

indicates that image difference-based triggering methods are less

robust as camera movements can lead to mismatched camera im-

ages between frames. Although it is possible to leverage techniques

that stitch consecutive frames, such techniques are likely to violate

the latency requirement outlined in the second challenge. As such,

we design a unit sphere-based point cloud-based triggering strategy

which is less sensitive to observation point cloud changes and can

be integrated as a part of our mobile GPU processing pipeline to

satisfy the real-time goal.

The triggering decision making, in essence, evaluates the unit

sphere-based point cloud differences between frames and decides

triggering based on the amount of difference. Specifically, Xihe

makes the triggering decision by: (i) calculating the anchor-wise

color difference (i.e., MSE of two RGB values) between two unit

sphere-based point clouds that are stored in the temporary buffer

and the persistent buffer, respectively; (ii) obtaining the pooling

averages using a sliding window of size 𝑁 (i.e., 𝑁 anchors) on

the sphere for each anchor; (iii) triggering estimation when any

pooled value exceeds a threshold value 𝜃 . Both the threshold and

the number of nearest neighbors can be configured empirically

and we set the threshold value 𝜃 = 0.6 and 𝑁 = 4 based on our

analysis in Section 4.2.1. If Xihe client decides to trigger the lighting

estimation, we will continue the pipeline execution by merging

the temporary buffer into the persistent buffer. Otherwise, we will

early exit the GPU pipeline execution.

4.2.2 Providing Temporal-coherent Rendering. Lighting estimation

can fall short in reflecting the physical world lighting at the exact

moment. As we described in Section 4 and will show in Section 6,

Xihe can achieve as fast as 20.67ms per lighting estimation request.

This property well positions us to use a simple yet effective ap-

proach to achieve temporal-coherent rendering. To compensate

the estimation delay, we utilize mobile ambient light sensor, which

is cheap to use and provides low-latency ambient average color

and intensity lighting data, to continuously adjust the rendered

environment lighting per frame. Once the SH coefficients response

is available on the mobile device, Xihe will apply it to re-lit the vir-

tual object. As such, our compensation technique can improve the

visual coherence when the environment lighting is changing very

rapidly and handle use cases with less ideal network conditions.

To account for user movement during a single AR session, Xihe

leverages mobile device’s built-in accelerometer and gyroscope

to obtain the camera position and orientation information. This

allows Xihe to track estimation positions (i.e., represented as world

coordinates relative to the origin coordinate) and distinguish them

as active and inactive positions; an inactive position is one that

is outside the current camera view. If all estimation positions are

inactive, Xihe will not engage the GPU pipeline1; as estimation

positions become active, Xihe will resume its normal operations. If

Xihe client triggers the estimation and subsequently sends the unit

1An alternative is to leverage the triggering algorithm to proactively send unit sphere-
based point cloud to the edge for point cloud augmentation.

AR Applications

Xihe ControllerXihe
Recorder

Point Cloud
Generation

Unit Sphere
Sampling

Estimation
Triggering

Environment

Scanner

Data

Encode

ARFoudnation

Unity3D
Device

Hardware

PyTorch
Inference
Backend

Inference
Service

PointCloud
Management

Meta
Data

Managem
ent

WebService

Data
Extrapolation

EstimationRequest

Estimated SH Coefficients

Mobile Device Edge Server

Figure 6: Xihe architecture.

Table 1: Xihe key classes and functions.

API Meaning

XiheController Main system controller

EnvironmentScanner Supporting environment scan

GPUDataProcessor Supporting point cloud processing

InferenceBackend Provide lighting estimation inference

XiheRecorder Provide AR session recording

EstimateAt(p) Function to estimate lighting at given position

PlaceAndEstimateAt(p) Function to simply place virtual object and estimate
placement position lighting

StartRecording Function to start AR session recording

StopRecording Function to stop AR session recording

sphere-based point cloud corresponding to the active estimation

position to the edge, Xihe server can opportunistically augment

any managed unit sphere-based point cloud at the edge.

5 IMPLEMENTATION

We implement Xihe in two logical components: one runs on the

mobile client side and the other as a managed edge service. Figure 6

depicts the architecture of Xihe. Our implementation consists of

around 5K lines of code written in C#, Python, and CUDA C++,

and works with commodity hardware and software frameworks.

Specifically, Xihe client is built on top of AR Foundation 4.2.0 [30]

which provides basic AR functionalities and works with rendering

engine including Unity3D 2020. We design Xihe client to run on

a wide range of mobile hardware. Xihe is developed as a Python-

based web API server and uses PyTorch [22] backend with just-in-

time model optimization to host our deep learning model XiheNet.

The server is packaged as a Docker image to facilitate deployment.

Client. Xihe client is implemented as a C# library that runs on

Unity3D. Table 1 summarizes the provided APIs. The mobile GPU

pipeline, including Point Cloud Generation, UnitSphere Sampling,

and Estimation Triggering components, is implemented as Unity3D

compute shaders in HLSL. Developers can start using Xihe with

both new and existing AR projects by initializing the XiheController

at the start of application life cycle. This allows the applications to

either create a new AR session or join an existing one. Developers

may ignore the implementation of other internal components or can

extend Xihe to support new features, e.g., using new camera hard-

ware through overwriting the AcquireEnvironmentScan function in

the EnvironmentScanner class. We provide EstimateAt and PlaceAn-

dEstimateAt, two key functions to provide spatially-variant lighting

estimation through the XiheController. The first estimation function

MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA Y. Zhao and T. Guo

directly returns the estimated SH coefficients as an ordered array,

and therefore can be used in any customized rendering pipelines or

shaders. The second function works directly with Unity3D engine

by supporting a simplified workflow of placing virtual objects in

the format of Unity3D Prefabs into the physical surrounding. If

sufficient lighting change is detected, both functions will trigger

HTTP requests to send the encoded unit sphere-based point cloud

to the server. Xihe also has a built-in AR session recorder that

captures the essential AR session information, including lighting

estimation position, RGB-D camera feed, camera pose and ambi-

ent light sensor data. This recorder is built on top of the same

EnvironmentScanner used in Xihe’s estimation workflow. We pro-

vide two APIs, StartRecording and StopRecording, to control

the recording process.

Server. Xihe server is built on top the Tornado web framework and

the PyTorch inference backend with just-in-time model optimiza-

tion. Xihe server provides two key features, namely the AR session

management and the lighting estimation request processing. The AR

session management service is provided by three components, i.e.,

MetaData Management, PointCloud Management, and Data Extrap-

olation. Specifically, the MetaData Management is responsible for

storing AR session’s basic information, such as unique session ID

issued by the server, client-specific identifier, and timestamp. To

connect to the Xihe server, each Xihe client will either create a new

AR session by posting requests or join an existing AR session by

providing the session ID. Additionally, we use the NumPy library to

perform tensor operations on HTTP payload in the byte format to

achieve historical data extrapolation. A pretrained XiheNet (num-

ber of anchors = 1280) is included and managed by the PyTorch

inference backend. Xihe server is packaged as a Docker image and

can be setup with minimal configuration effort.

A reference AR application.We include an example AR applica-

tion implemented with Xihe APIs and the ARKit V4.0 plugin from

the ARFoundation. The resulting application can be compiled to

run on iOS and macOS. This reference application allows a mobile

user to place 3D virtual objects by selecting rendering positions

in the current camera view. For each virtual object, the mobile

application will generate one logical lighting estimation request

per frame. Depending on the detected lighting conditions, Xihe

client will trigger one or more physical lighting estimation requests

which will send the encoded unit sphere-based point cloud to the

Xihe server for inference. The number of physical lighting esti-

mation requests per frame is by default depending on the object

size but can also be configured by the mobile AR developers for

performance and quality trade-offs. The 3D objects will be ren-

dered with spatially-variant lighting information provided by Xihe.

Lastly, users can easily record the AR session with Xihe’s session

recorder, facilitating real-world record-and-replay experiments.

6 EVALUATION

We conducted our experiments by using an example AR application

which uses Xihe’s APIs for obtaining spatially-variant lighting esti-

mation. We used three different devices, a MacBook Pro 15ž, a 2nd

generation iPad Pro 11ž with a built-in Lidar sensor, and an iPhone

11 Pro, to evaluate the on-device performance. Our edge service

is on a desktop running Ubuntu 20.04 with a 16 core AMD Ryzen

0 5 10 15 20 25
Time (ms)

iPad
 ProiPho

ne
 11

Mac
Boo

k P
ro

15

On-device Computation Networking Edge Computation

Figure 7: Xihe end-to-end time. Xihe lighting estimation via

the university WiFi, can complete in as fast as 20.67ms.

Figure 8: AR scenes rendered with lighting information pro-

vided by ARKit and our framework Xihe.

Threadripper 2950X CPU, 128GBmemory, and a Nvidia RTX 2080Ti

GPU. We quantified Xihe’s performance in terms of end-to-end

lighting estimation time, accuracy, and visual effects and compared

it to the commercial baseline ARKit [13], an academic framework

GLEAM [21], and a 3D vision estimation pipeline [33] where ap-

propriate. Xihe can deliver spatially-variant lighting estimation as

fast as 20.67ms and achieves visually-coherent rendering effects.

We further evaluate how each proposed technique and configura-

tion contributes to Xihe’s performance with a detailed breakdown

study, e.g., with different sampling strategy, anchor size, and mobile

network condition, and a lab-based real-world evaluation.

6.1 End-to-end Performance

We demonstrate the end-to-end performance achieved by Xihe;

Xihe takes less than 24.04ms to complete in all three devices with

the university WiFi as shown in Figure 7. As such, Xihe not only

can support 30fps refresh rate but also takes 19.9% less time than

GLEAM [21]. The on-device GPU computation takes less than

6.65ms to finish running on all three devices. This indicates that

Xihe can support a wide range of mobile devices. Figure 8 compares

the visual effects of three 3D objects. Given the same virtual object

and the same environment lighting condition, Xihe’s reference AR

application is able to display the virtual object in a photorealistic

manner. However, when using the ARKit’s ambient lighting esti-

mation APIs, objects will be rendered with less desirable effect as

only ambient lighting intensity and color information are available.

Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile Augmented Reality MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA

Table 2:Mobile computation breakdown.All components except

the first and the last run in the GPU pipeline.

On-device
Component

MacBook Pro
Avg. Time (ms)

iPhone
Avg. Time (ms)

iPad Pro
Avg. Time (ms)

AcquireEnvironmentScan N/A N/A 1.458
GeneratePointCloud 0.063 0.193 0.221
UniSphereSampling 0.015 0.061 0.063
MergeTemporaryBuffer 0.007 0.024 0.029
MakeTriggeringDecision 1.34 2.185 3.040
MergePersistentBuffer 0.013 0.057 0.062
EncodeBuffer 2.16 2.332 2.832

Table 3: Edge computation breakdown.

Edge
Component

512 Anchors
(ms)

1280 Anchors
(ms)

2048 Anchors
(ms)

Decoding 0.23 0.30 0.32
Extrapolation 0.01 0.01 0.01
Inference 3.99 5.91 10.80

6.2 Performance Breakdown

6.2.1 On-device performance. To quantify the performance of Xihe

client, we measure the time breakdown of each component that

runs on the mobile device. Table 2 shows the average time across

five runs measured with the Unity3D built-in profiling tool [31].

For the MacBook Pro and iPhone measurement, since they do not

have built-in Lidar sensors, we randomly selected five test data.

First, we observe that the total on-device time excluding the Ac-

quireEnvironmentScan step using MacBook Pro, iPhone and iPad

Pro are 3.57ms, 4.90ms and 6.65ms, respectively. This is expected

as the results matches the devices’ GPU computation capabilities.

Second, the long GPU time of two dominating components (i.e.,

MakeTriggeringDecision and EncodeBuffer) are likely due to

the callback functions needed for communicating between CPU

and GPU and non-continuous memory access during encoding.

6.2.2 Edge performance. To quantify the performance of Xihe

server, we measure the time breakdown of each component that

runs on a GPU-equipped desktop. Table 3 shows the average time

across the entire test dataset. First, we observe that both the decoding

and inference time increase with the number of anchors. This

is expected as unit sphere-based point cloud with more anchors

are likely to have more encoded points that need to be decoded

and transformed. Second, the point cloud extrapolation only takes

0.01ms but provides the opportunity to improve the lighting esti-

mation accuracy, i.e., by boosting the input point cloud’s entropy

with historical data.

6.2.3 Network performance. Figure 9 shows the network time un-

der different network conditions and user interactions. If the user

places larger objects, i.e., more positions to estimate, the network

time increases sublinearly under all network conditions. For ex-

ample, for iPad Pro that uses the university WiFi, the network

time to handle four estimation positions is about 1.28X that of one

estimation position. Both residential WiFi and LTE take several

times longer than using the university WiFi, indicating the need

to properly deploy the Xihe server. Even under undesirable net-

work condition, e.g., iPhone with LTE, Xihe can still generate one

lighting estimation in about 79.2ms which is lower than the 400ms

needed by GLEAM to generate high-fidelity estimation [21].

1 2 4
Num. of Estimation Positions

0

10

20

30

40

50

60

70

80

N
et

w
or

k
Ti

m
e

(m
s)

University Residential LTE

(a) iPhone.

1 2 4
Num. of Estimation Positions

0

10

20

30

40

50

60

70

80

N
et

w
or

k
Ti

m
e

(m
s)

University Residential LTE

(b) iPad Pro (LTE via hotspot).

Figure 9: Xihe network time. We measure the time needed to

transfer the encoded point cloud of 1280 anchors and to receive the

lighting estimation SH coefficients.

512 768 1024 1280 1536 1792 2048
Num. of Anchors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
el

at
iv

e
En

tro
py

Ours Farthest Point Sampling Uniform Random

Figure 10: Relative entropy comparison of different point

cloud sampling techniques. Our unit sphere-based point cloud

sampling achieves 55.74% and 30.80% better entropy compared to

uniform random sampling [33] and farthest point sampling tech-

niques [24], respectively.

6.3 Impact of Point Cloud Sampling

Entropy comparison. We use the point cloud test dataset from

PointAR [33] and generate three variants using the uniform random

sampling [33], farthest point sampling [24], and our proposed unit

sphere-based point cloud sampling techniques. For each point cloud

(and its downsampled versions), we first calculate the entropy using

Equation (1) and divide it by the raw point cloud entropy. Figure 10

compares the relative entropy. First, our unit sphere-based point

cloud sampling approach is more effective in preserving the en-

tropy, with on average 0.545 higher relative entropy than using

the uniform random sampling, and 0.359 higher than using the

farthest point sampling. Second, using more anchors can improve

the entropy but the improvement plateaus after 1280. This obser-

vation suggests that using 1280 anchors can be effective. Later in

Section 6.5 we will compare and show that unit sphere-based point

cloud technique also achieves better estimation accuracy.

Impact of acceleration grids. In this section, we analyze the error

associated with the acceleration grid with themismatch rate metric,

calculated by comparing the colored anchors with and without

acceleration. We first randomly generate a set of 1M points in a

cubic 3D spacewith an edge length of 10meters to simulate common

AR application scenarios in real-world environments. Figure 11(a)

shows the mismatch rate using different acceleration grid sizes.

First, as the grid size increases (i.e., corresponding to pre-sampled

more points), the mismatch rate decreases. For example, with an

acceleration grid of 1024x512 and an anchor size of 1280, we observe

that 97.36% of points were matched to the same anchor without

MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA Y. Zhao and T. Guo

512 768 1024 1280 1536 1792 2048
Num. of Anchors

0.01

0.02

0.03

0.04

0.05

0.06

M
is

m
at

ch
 R

at
e

512x256
1024x512

1536x768
2048x1024

(a) Acceleration mismatch

512 768 1024 1280 1536 1792 2048
Num. of Anchors

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

512x256
1024x512

1536x768
2048x1024

(b) Impact on estimation accuracy

Figure 11: Impact of acceleration grids. Even though accelera-

tion grids might erroneously match a small percent of points, it has

minimal impact on the estimation accuracy.

0 200 400 600 800 1000
Num. of Empty Anchors

0.0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Pr
ob

ab
ilit

y

(a) Number of Anchors = 1280.

512 768 1024 1280 1536 1792 2048
Num. of Anchors

0

5000

10000

15000

20000

25000

30000

By
te

s

(b) Non-empty anchors.

Figure 12: Empirical characterization of unit sphere-based

point cloud generated from the test dataset [33].

Table 4: Comparison of different encoding methods.

Encoding Method
Unit Size

(bytes)
Avg. Size

(bytes)
Avg. Time

(ms)

float32 16 20480 0.003
float32 + striping 18 10926 1.793
uint8 + float16 5 8960 1.675
uint8 + float16 + striping (Ours) 7 4249 1.003

using acceleration. Second, for a given grid size, the mismatch rate

also depends on and grows with the number of anchors. However,

the impact is relatively small compared to the choice of acceleration

grid size and is within 1% for the range of anchor numbers.

We further investigate the impact of our acceleration mechanism

on the lighting estimation accuracy. Figure 11(b) shows the normal-

ized accuracy, calculated by comparing the accuracy achieved using

acceleration and the ground truth accuracy using XiheNet. We

see that neither the acceleration grid size and the anchor number

impact the lighting estimation accuracy. This also suggests that our

XiheNet has a good generalization.

6.4 Performance of Encoding

Next, we evaluate the effectiveness of different encoding methods.

Figure 12 presents the empirical characterization by performing

the unit sphere-based point cloud sampling technique to the raw

point clouds from the test dataset. We find that unit sphere-based

point cloud generated from a single RGB-D camera image usually

contains many uninitialized anchors (i.e., empty anchors), as shown

in Figure 12(a). For example, when setting the number of anchors

to be 1280, we observe that more than half anchors are empty.

512 768 1024 1280 1536 1792 2048
Num. of Anchors

0

10

20

30

40

50

60

N
et

w
or

k
Ti

m
e

(m
s)

float32
float32+striping

uint8+float16
uint8+float16+striping(ours)

(a) One estimation position.

512 768 1024 1280 1536 1792 2048
Num. of Anchors

0

10

20

30

40

50

60

N
et

w
or

k
Ti

m
e

(m
s)

float32
float32+striping

uint8+float16
uint8+float16+striping(ours)

(b) Two estimation positions.

512 768 1024 1280 1536 1792 2048
Num. of Anchors

0

10

20

30

40

50

60

N
et

w
or

k
Ti

m
e

(m
s)

float32
float32+striping

uint8+float16
uint8+float16+striping(ours)

(c) Four estimation positions.

512 768 1024 1280 1536 1792 2048
Num. of Anchors

0

2

4

6

8

10

12

14

16

N
et

w
or

k
Ti

m
e

(m
s)

1 2 4

(d) Our practical encoding.

Figure 13: Network performance of different encoding meth-

ods. The mobile AR application connects to the Xihe server via the

university WiFi.

Figure 12(b) shows the required bytes for encoding only non-empty

anchors using float32.

Table 4 compares the required bytes and time to encode our unit

sphere-based point cloud using different methods. Even though di-

rectly encoding using uint8 for RGB values and float16 for depth

information only requires 5 bytes per anchor, it takes more than

twice as many bytes to transfer the entire unit sphere-based point

cloud than our encoding approach. Further, as the striping opera-

tion is cheaper, taking about 0.09ms on the iPad Pro, our encoding

method improves the total encoding time by 1.67X compared to

directly encoding with unit8+float16.

Figure 13 shows the median network time to transfer the unit

sphere-based point cloud from the MacBook Pro to the Xihe server

via the university WiFi. Results for other devices and network con-

ditions (residential WiFi and T-mobile LTE) exhibit similar trends

and are omitted. First, we observe that our encoding method takes

as little as 26.3% network time compared to three baselines under all

combinations of anchor numbers and estimation positions. Second,

the time taken by our encoding method grows slower with the

number of anchors compared to other encoding approaches.

6.5 3D Vision-based Estimator Performance

We evaluate the performance of XiheNet and compare its accu-

racy to a state-of-the-art lighting estimator PointAR [33]. We use

the same 3D indoor dataset (about 608k training and 2037 test

data) as PointAR and preprocess each image to generate the unit

sphere-based point cloud and SH coefficients pairs. We extract SH

coefficients from the LDR format given its best visual rendering

effects. We repeat the same process using the uniform random

sampling to generate the training dataset for PointAR. We train

Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile Augmented Reality MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA

512 768 1024 1280 1536 1792 2048
Num. of Anchors

0.08

0.09

0.1

0.1

0.11

0.11

0.12

SH
 C

oe
ffi

ci
en

ts
 R

M
SE

Ours
Uniform Random

Farthest Point Sampling

(a) Lighting estimation error.

512 768 1024 1280 1536 1792 2048
Num. of Anchors

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (i

nf
er

/s
ec

)
(b) Inference throughput.

Figure 14: 3D vision-based lighting estimator performance.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Theta

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ig

ge
r A

cc
ur

ac
y

epsilon
0.01
0.06
0.11
0.16
0.21

(a) Observation image MSE.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Theta

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ig

ge
r A

cc
ur

ac
y

epsilon
0.01
0.06
0.11
0.16
0.21

(b) Xihe window size=1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Theta

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ig

ge
r A

cc
ur

ac
y

epsilon
0.01
0.06
0.11
0.16
0.21

(c) Xihe window size=4.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Theta

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ig

ge
r A

cc
ur

ac
y

epsilon
0.01
0.06
0.11
0.16
0.21

(d) Xihe window size=16.

Figure 15: Triggering strategy analysis. Each strategy is evalu-

ated on five 𝜖-percentile split datasets.

both XiheNet and PointAR using the same hyperparameters, i.e.,

2 PointConv blocks, each with multilayer perceptron setup of (64,

128) and (128, 256) [33]. Additionally, we train a third model (with

the same backbone as XiheNet) with farthest point sampling [24].

Figure 14 shows the performance of the 3D vision-based es-

timators. We use SH coefficients RMSE, which is defined as the

numerical difference between the predicted and ground truth SH

coefficients, as the metric to evaluate the lighting estimation ac-

curacy [8]. Our XiheNet achieves better SH coefficients RMSE

(the lower the better) for all unit sphere-based point cloud sizes

as shown in Figure 14(a). Further, we observe that XiheNet on a

Nvidia RTX 2080Ti GPU can generate lighting estimations between

3.99ms to 10.80ms. As shown in Figure 14(b), we can support up to

250 inferences per second with batch size=1.

6.6 Triggering Strategy Analysis

We quantify the effectiveness of different triggering strategies us-

ing the metric triggering accuracy that describes the percentage of

correctly identified environment lighting changes between two con-

secutive frames. We create a new dataset that consists of 1754 image

pairs and a binary label for each pair indicating the lighting change.

The image pairs are formed with two methods: (i) select data items

from the test dataset that share the same observation image but

from different estimation locations; (ii) randomly select a pair of

Table 5: Real-world evaluation of Xihe. We record and replay

three AR sessions under different lighting and movement dynamics.

Variable Threshold 𝜃
SH coefficients

RMSE Mean
SH coefficients

RMSE Std
Triggering
Percentage

0.5 0.0180 0.0119 1.59%
R1: Light temperature 0.6 0.0193 0.0175 0.27%

0.7 0.0169 0.0047 0.13%

0.5 0.0113 0.0065 2.69%
R2: Light intensity 0.6 0.0110 0.0038 0.24%

0.7 0.0180 0.0054 0.24%

0.5 0.0040 0.0231 48.41%
R3: User movement 0.6 0.0070 0.0262 23.67%

0.7 0.0102 0.0051 5.91%

data items.The first pairing method covers the slower-changing

scene scenarios while the second pairing method covers faster-

changing ones. To assign the lighting change label to each pair, we

use three common metrics, SH coefficients RMSE and two image-

based metrics (reconstructed irradiance map PSNR and SSIM), that

are used for describing lighting conditions. We then sort each image

pair in ascending order based on the metric calculation and label

the lower and higher 𝜖 percents as 0 and 1, respectively. A label of

0 indicates no lighting change while a label of 1 indicates lighting

change. By ignoring the middle percentile, our label assignment

method allows us to automatically distinguish the pairs that exhibit

lighting changes from ones that do not with high confidence. We

manually verify the labeling results.

Figure 15 compares the triggering accuracy with different dataset

partition threshold 𝜖 and triggering threshold 𝜃 , using the SSIMmet-

ric. Results corresponding to other metrics show similar trends and

are omitted. We first observe that the observation MSE-based trig-

gering strategy has a good accuracy when the triggering threshold

𝜃 is properly configured. Outside a small range of 𝜃 , the triggering

accuracy is significantly lower. Second, we see that Xihe’s sliding

window based strategy can achieve better triggering accuracy than

the MSE-based strategy and it’s less sensitive to the choice of 𝜃 .

Using larger window sizes have little impact on the triggering accu-

racy. As different window sizes correspond to different computation

complexity, we use a default of window size=4 in Xihe.

6.7 Lab-based Real-world Evaluation

In this section, we present a real-world evaluation of Xihe in a

lab environment to demonstrate its effectiveness of our triggering

algorithm.We show that with optimal configuration (𝜃 = 0.6,𝑁 = 4,

1280 anchors), Xihe can skip sending at least 76.24% estimation

requests to the edge while still achieves comparable accuracy to

running inference every frame. We use Xihe’s session recorder to

capture recordings when the user is interacting with our reference

AR application in an indoor environment. We create both lighting

condition and movement dynamics by using a remotely controlled

light source and having the user walk around the light source.

For each recording, we control one of the variables, i.e., light

temperature, light intensity, and user movement. The light source

allows us to vary the temperature from candle light (1500K) to

daylight (6500K) with 500K increment and the intensity from 0%

to 100% (800 lumens) with 1% increment. We record relevant AR

session information per frame. In total, we create three recordings

with an average length of 35 seconds. We replay each recorded AR

MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA Y. Zhao and T. Guo

Metallic=0, Smoothness=0 Metallic=0, Smoothness=1 Metallic=1, Smoothness=1 Metallic=1, Smoothness=0 Metallic=0.5, Smoothness=0.5

Figure 16: AR scenes rendered with Xihe with different materials. Both metallic and smoothness are Unity parameters.

session to Xihe and report both the SH coefficients RMSE and the

percentage of triggered frames (i.e., being sent to the edge).

As shown in Table 5, Xihe (𝜃 = 0.6) only needs to send up to

23.67% inference requests to the XiheNet while only incurring an

average RMSE of 0.011. We also inspect the visual effects of the

rendered object during the replay and confirm minimal differences

with and without the triggering algorithm enabled. Interestingly,

for the third recording where the user is walking around the light

source with the iPad Pro,Xihe triggers a lot more inference requests

than the other two recordings. We suspect that more frequent

triggering is likely due to increased observation completeness at

estimation positions and enlarged viewing angles.

7 RELATED WORK

To provide mobile AR that is suitable for real-world deployment,

researchers have been working on aspects including energy opti-

mization, interactivity, and lifelike rendering [2, 3, 26]. The key to

achieve lifelike rendering in AR is the ability to obtain accurate

lighting information [8, 25, 29]. Although intuitively simple, there

are a number of AR-specific challenges that distinguish this task

from prior work in the graphics community [6, 11, 25].

There has been little work on providing real-time lighting estima-

tion for mobile AR [5, 21, 33]. Commercial SDKs such as ARKit [13]

and ARCore [9] only provide ambient lighting estimation which is

often insufficient to capture the spatially-variant environment light-

ing. A recent work GLEAM leverages physical probes and improves

the rendering effects over these commercial SDKs [21]. However,

the use of physical probes hinders the user experiences. Our work is

the first 3D vision-based framework that provides spatially-variant

lighting estimation in real time.

The system design of Xihe is largely inspired by our empirical

study and tackles problems that are common to edge-based AR

systems [16, 18, 19]. Specifically, when designing Xihe, we focus

on minimizing the reliance on mobile resources to avoid excessive

power consumption [2, 3, 12]; we also minimize the network com-

munication to the edge server by only issuing requests that are

likely to improve the lighting estimation accuracy, e.g., when the

lighting condition changes or when Xihe has more updated envi-

ronment information [4, 17]. Our work differs from existing work

on edge-based AR systems in addressing the lighting estimation-

specific requirements and 3D vision-based opportunities.

8 DISCUSSION

We made the conscious decision to co-design some aspects of Xihe,

including the unit sphere-based point cloud sampling and the trig-

gering metric, with a state-of-the-art 3D lighting estimator [33].

We believe such application-specific optimizations are worthwhile

trade-offs, allowing us to fully explore the performance potential of

both algorithms and systems. In other words, rather than exposing

the trade-offs of accuracy and performance to AR developers, we

offload such responsibilities to the framework design phase.

Nevertheless, the lighting estimation accuracy provided Xihe

will be bounded by the supported lighting estimators. For example,

as XiheNet currently only demonstrates good estimation accu-

racy for low-frequency lighting, virtual objects that require high-

frequency lighting information (such as metallic finish) will have

less photorealistic rendering effects. Figure 16 show the visual ef-

fects of Stanford bunny with different material settings. Lower

metallic values will give more matte-looking finish while lower

smoothness values will lead to higher diffused reflection.

Additionally, to effectively support any future models on Xihe,

respective components have to be rethought and redesigned. How-

ever, given Xihe’s modular design and that its major components

are general enough, we do not anticipate substantial changes. Lastly,

Xihe currently provides an end-to-end 3D vision-based lighting

estimation service per AR session. To support multi-user shared

AR sessions, we will at least need to redesign the Point Cloud

Management module to carefully manage the lifecycles and states.

9 CONCLUSION

Our system Xihe is a 3D vision-based lighting estimation platform

that provides fast and accurate spatially-variant lighting estimation

for mobile AR systems. Specifically our unit sphere-based point

cloud sampling allows us to effectively downsample the raw point

cloud captured in real time without compromising the lighting esti-

mation accuracy. To avoid unnecessary network communication

between mobile and edge, we designed an adaptive triggering al-

gorithm that only sends unit sphere-based point cloud to the edge

when there are significant lighting condition changes. The good

estimation accuracy is guaranteed by our 3D-based lighting model

that is inspired by recent work [26, 33] and is redesigned to consider

both network and storage cost. We implemented Xihe on top of

Unity3D, ARFoundation, and Pytorch frameworks. Our controlled

experiments with three devices including a Lidar-enabled iPad Pro

demonstrated that Xihe can provide visually-better rendering than

ARKit and GLEAM under various experiment settings.

ACKNOWLEDGMENTS

We thank all anonymous reviewers, our shepherd, and our artifact

evaluator Tianxing Li for their insight feedback. This work was

supported in part by NSF Grants #1755659 and #1815619.

Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile Augmented Reality MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA

REFERENCES
[1] [n.d.]. Depth buffer - The gritty details.
[2] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V Krishnamurthy, and

Amit K Roy-Chowdhury. 2019. Frugal Following: Power Thrifty Object Detection
and Tracking for Mobile Augmented Reality. In Proceedings of the 17th Conference
on Embedded Networked Sensor Systems (New York, New York) (SenSys ’19). ACM,
New York, NY, USA, 96ś109.

[3] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz. 2018.
MARVEL: Enabling Mobile Augmented Reality with Low Energy and Low La-
tency. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor
Systems (Shenzhen, China) (SenSys ’18). ACM, New York, NY, USA, 292ś304.

[4] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and
Hari Balakrishnan. 2015. Glimpse: Continuous, Real-Time Object Recognition
on Mobile Devices. In Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems (Seoul, South Korea) (SenSys ’15). Association for
Computing Machinery, New York, NY, USA, 155ś168.

[5] Dachuan Cheng, Jian Shi, Yanyun Chen, Xiaoming Deng, and Xiaopeng Zhang.
2018. Learning Scene Illumination by Pairwise Photos from Rear and Front
Mobile Cameras. Comput. Graph. Forum 37, 7 (2018), 213ś221. http://dblp.uni-
trier.de/db/journals/cgf/cgf37.html#ChengSCDZ18

[6] Paul Debevec. 2006. Image-based lighting. In ACM SIGGRAPH 2006 Courses.
4śes.

[7] Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano
Gambaretto, Christian Gagné, and Jean-François Lalonde. 2017. Learning to
Predict Indoor Illumination from a Single Image. ACM Transactions on Graphics
(2017).

[8] Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, and Jean-François
Lalonde. 2019. Fast Spatially-Varying Indoor Lighting Estimation. CVPR (2019).

[9] Google. 2020. ARCore. https://developers.google.com/ar.
[10] Google for Education. [n.d.]. Bringing virtual and augmented reality to school |

Google for Education. https://edu.google.com/products/vr-ar/?modal_active=
none. Accessed: 2020-7-24.

[11] Johannes Gunther, Stefan Popov, Hans-Peter Seidel, and Philipp Slusallek. 2007.
Realtime ray tracing on GPU with BVH-based packet traversal. In 2007 IEEE
Symposium on Interactive Ray Tracing. IEEE, 113ś118.

[12] Jinhan Hu, Alexander Shearer, Saranya Rajagopalan, and Robert LiKamWa. 2019.
Banner: An Image Sensor Reconfiguration Framework for Seamless Resolution-
based Tradeoffs. In Proceedings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services (Seoul, Republic of Korea) (MobiSys
’19). Association for Computing Machinery, New York, NY, USA, 236ś248.

[13] Apple Inc. 2020. Introducing ARKit 4. https://developer.apple.com/augmented-
reality/arkit/.

[14] Apple Inc. 2020. iPad Pro 2020. https://www.apple.com/ipad-pro/specs/.
[15] Inter IKEA Systems B. V. 2017. IKEA Place. https://apps.apple.com/us/app/ikea-

place/id1279244498. Accessed: 2020-7-2.
[16] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge Assisted Real-time

Object Detection for Mobile Augmented Reality. In The 25th Annual International
Conference on Mobile Computing and Networking (MobiCom’19) (Los Cabos, Mex-
ico) (MobiCom ’19, Article 25). Association for Computing Machinery, New York,
NY, USA, 1ś16.

[17] Q Liu and T Han. 2018. DARE: Dynamic Adaptive Mobile Augmented Reality
with Edge Computing. In 2018 IEEE 26th International Conference on Network
Protocols (ICNP). 1ś11.

[18] Q Liu, S Huang, J Opadere, and T Han. 2018. An Edge Network Orchestrator for
Mobile Augmented Reality. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications. ieeexplore.ieee.org, 756ś764.

[19] Z Liu, G Lan, J Stojkovic, Y Zhang, C Joe-Wong, and M Gorlatova. 2020. CollabAR:
Edge-assisted Collaborative Image Recognition for Mobile Augmented Reality. In
2020 19th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN). 301ś312.

[20] Samuel S. Ogden and Tian Guo. 2018. MODI: Mobile Deep Inference Made Effi-
cient by Edge Computing. In USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18).

[21] Siddhant Prakash, Alireza Bahremand, Linda D Nguyen, and Robert LiKamWa.
2019. Gleam: An illumination estimation framework for real-time photoreal-
istic augmented reality on mobile devices. In Proceedings of the 17th Annual
International Conference on Mobile Systems, Applications, and Services. 142ś154.

[22] PyTorch. [n.d.]. Tensors and Dynamic neural networks in Python with strong
GPU acceleration. https://github.com/pytorch/pytorch. Accessed: 2020-8-4.

[23] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2016. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. arXiv preprint
arXiv:1612.00593 (2016).

[24] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In
Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf

[25] Ravi Ramamoorthi and Pat Hanrahan. 2001. An efficient representation for
irradiance environment maps. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques - SIGGRAPH ’01. ACM Press, Not
Known, 497ś500. https://doi.org/10.1145/383259.383317

[26] Kai Rohmer, Johannes Jendersie, and Thorsten Grosch. 2017. Natural environment
illumination: Coherent interactive augmented reality for mobile and non-mobile
devices. IEEE transactions on visualization and computer graphics 23, 11 (2017),
2474ś2484.

[27] Ruwen Schnabel and Reinhard Klein. 2006. Octree-based point-cloud compression.
In Proceedings of the 3rd Eurographics / IEEE VGTC conference on Point-Based
Graphics (Boston, Massachusetts) (SPBG’06). Eurographics Association, Goslar,
DEU, 111ś121.

[28] Shuran Song and Thomas Funkhouser. 2019. Neural Illumination: Lighting
Prediction for Indoor Environments. CVPR (2019).

[29] Pratul P. Srinivasan, BenMildenhall, MatthewTancik, Jonathan T. Barron, Richard
Tucker, and Noah Snavely. 2020. Lighthouse: Predicting Lighting Volumes for
Spatially-Coherent Illumination. In CVPR.

[30] Unity. 2020. AR Foundation 4.2.0-preview.5. https://docs.unity3d.com/Packages/
com.unity.xr.arfoundation@4.2/manual/index.html.

[31] Unity3D. [n.d.]. Unity Profiler. https://docs.unity3d.com/Manual/Profiler.html.
Accessed: 2020-8-4.

[32] Wenxuan Wu, Zhongang Qi, and Li Fuxin. 2019. PointConv: Deep Convolutional
Networks on 3D Point Clouds. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[33] Yiqin Zhao and Tian Guo. 2020. PointAR: Efficient Lighting Estimation for Mobile
Augmented Reality. In Computer Vision ś ECCV 2020, Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International
Publishing, Cham, 678ś693.

http://dblp.uni-trier.de/db/journals/cgf/cgf37.html#ChengSCDZ18
http://dblp.uni-trier.de/db/journals/cgf/cgf37.html#ChengSCDZ18
https://developers.google.com/ar
https://edu.google.com/products/vr-ar/?modal_active=none
https://edu.google.com/products/vr-ar/?modal_active=none
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/
https://www.apple.com/ipad-pro/specs/
https://apps.apple.com/us/app/ikea-place/id1279244498
https://apps.apple.com/us/app/ikea-place/id1279244498
https://github.com/pytorch/pytorch
https://proceedings.neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://doi.org/10.1145/383259.383317
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/index.html
https://docs.unity3d.com/Manual/Profiler.html

	Abstract
	1 Introduction
	2 Problem and Solution Overview
	3 Spatially-variant Estimation
	3.1 Unit-Sphere based Point Cloud Sampling
	3.2 3D Vision-based Estimation Pipeline
	3.3 Edge-assisted Resource Sharing

	4 Fast and Accurate Estimation
	4.1 Per-frame Real-time Optimization
	4.2 Cross-frame Optimization

	5 Implementation
	6 Evaluation
	6.1 End-to-end Performance
	6.2 Performance Breakdown
	6.3 Impact of Point Cloud Sampling
	6.4 Performance of Encoding
	6.5 3D Vision-based Estimator Performance
	6.6 Triggering Strategy Analysis
	6.7 Lab-based Real-world Evaluation

	7 Related Work
	8 Discussion
	9 Conclusion
	Acknowledgments
	References

