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Abstract

Light guide plates are essential optical components widely
used in a diverse range of applications ranging from med-
ical lighting fixtures to back-lit TV displays. An essential
step in the manufacturing of light guide plates is the qual-
ity inspection of defects such as scratches, bright/dark spots,
and impurities. This is mainly done in industry through man-
ual visual inspection for plate pattern irregularities, which is
time-consuming and prone to human error and thus act as a
significant barrier to high-throughput production. Advances
in deep learning-driven computer vision has led to the explo-
ration of automated visual quality inspection of light guide
plates to improve inspection consistency, accuracy, and ef-
ficiency. However, given the computational constraints and
high-throughput nature of real-world manufacturing environ-
ments, the widespread adoption of deep learning-driven vi-
sual inspection systems for inspecting light guide plates in
real-world manufacturing environments has been greatly lim-
ited due to high computational requirements and integration
challenges of existing deep learning approaches in research
literature. In this work, we introduce a fully-integrated, high-
throughput, high-performance deep learning-driven workflow
for light guide plate surface visual quality inspection (VQI)
tailored for real-world manufacturing environments. To en-
able automated VQI on the edge computing within the fully-
integrated VQI system, a highly compact deep anti-aliased
attention condenser neural network (which we name Light-
DefectNet) tailored specifically for light guide plate surface
defect detection in resource-constrained scenarios was cre-
ated via machine-driven design exploration with computa-
tional and “best-practices” constraints as well as L1 paired
classification discrepancy loss. Experiments show that Light-
DetectNet achieves a detection accuracy of ∼98.2% on the
LGPSDD benchmark while having just 770K parameters
(∼33× and ∼6.9× lower than ResNet-50 and EfficientNet-
B0, respectively) and ∼93M FLOPs (∼88× and ∼8.4×
lower than ResNet-50 and EfficientNet-B0, respectively) and
∼8.8× faster inference speed than EfficientNet-B0 on an
embedded ARM processor. As such, the proposed deep
learning-driven workflow, integrated with the aforementioned
LightDefectNet neural network, is highly suited for high-
throughput, high-performance light plate surface VQI within
real-world manufacturing environments.

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Introduction

Deep neural networks have shown tremendous success in
different applications and fields of research in the past
decade. From computer vision tasks such as object detec-
tion (Redmon and Farhadi 2017; Liu et al. 2016), image
segmentation (Chen et al. 2017; He et al. 2017), or ob-
ject classification (Krizhevsky, Sutskever, and Hinton 2012;
He et al. 2016) and anomaly detection (Roth et al. 2022)
to natural language processing problem like speech transla-
tion (Vaswani et al. 2017), question answering (Ben-Younes
et al. 2019) or text to speech (Graves, Mohamed, and Hinton
2013), these models exceeded the expectation of researchers
with unbelievable modeling accuracy. These encouraging re-
sults have motivated different industries to take advantage
of these models in their workflow and to introduce new au-
tomation processes for different tasks.

However one of the bottlenecks of deep learning models is
their computational complexity. These models are very com-
putationally complex and parallel computing is one of the
only ways to make them feasible to use. As such, adoption
of these models has been more successful for the internet-
based technologies because of the possibility of using cloud
computing and taking advantage of powerful computing sys-
tems to make the process real-time. These models are still
mostly infeasible to be used in off-line and remote environ-
ments where the could computing is not accessible.

Autonomous driving cars, surveillance cameras, manu-
facturing automation machines are some examples where
cloud computation is not accessible and AI models should
be processed offline and on edge devices. Limitation of pro-
cessing power and/or memory in edge devices make the
common deep neural network architectures inefficient and
useless for these tasks which need to be performed in real-
time. Visual quality inspection (VQI) in manufacturing au-
tomation is an example of this scenarios where if the VQI
system does not perform in real-time it would reduce the
throughput of the whole manufacturing pipeline and drop
the efficiency dramatically. As such, AI automation models
must be highly efficient on edge devices.

Visual quality inspection is an important step in the man-
ufacturing process where the manufactured parts need to be
inspected and making sure they are defect-free, to be car-
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Figure 1: Proposed deep learning-driven light guide plate surface defect inspection workflow. A light guide plate on an assembly
line is passed into a fully-integrated visual quality inspection (VQI) system. The VQI system images the light guide plate, and
the images are passed into an edge compute unit equipped with LightDefectNet to conduct high-speed surface defect detection.
The light on the VQI system would display different colors depending on whether a defect is detected on light guide plates
being analyzed to alert an inspector. An inspector may use the inspection station on the fully-integrated VQI system to examine
the detected defective light guide plates.

ried forward to the next step in the production line. The
conventional approach to perform this process has been to
identify the possible defects by having human experts to
monitor each part manually. However this approach is time-
consuming and prone to human error due to repetitions of
the tasks. On the other hand, the manual inspection can be
a bottleneck in manufacturing throughput as human inspec-
tion efficiency bounded by the human expert’s performance
working in the line and limited. As such, automating this
task has gained higher attention in the past decade. Recently,
the success of different AI algorithms has motivated industry
to take advantage of AI model to address this problem. How-
ever, the hardware limitation in these environments make the
adoption even more difficult. Small devices in this environ-
ments and limitation in power and memory budgets reduces
the feasible computation hardware to edge devices. As such,
edge AI and the ability to run AI model and specifically deep
learning models on edge AI gain more traction recently.

Edge AI and efficient deep learning models for edge de-
vices has gained more attention in the past couple of years.

Different pruning (Li et al. 2016), or quantization (Gholami
et al. 2021) algorithms were proposed to reduce the number
of parameters in the deep learning models or take advan-
tage of hardware processing efficiency in quantized mode to
speed up the running time for deep learning models. More-
over, automatic model optimization and AutoML (Cai et al.
2019; Zhang et al. 2020; He et al. 2018) approaches have
been the focused of the researchers to design efficient archi-
tectures in a more efficient and effective way. These types
of algorithms mostly formulate finding the efficient archi-
tecture as an optimization process satisfying an objective
function. While these methods demonstrated a viable path
to design efficient deep neural network architecture for edge
devices they are still in their infancy and there is still not one
solution to fit all.

Moreover, these algorithms mostly have been evaluated
by public datasets, for example natural images in case
of computer vision tasks; and when tried on specialized
datasets, they fail to produce acceptable functioning accu-
racy and performance. Manufacturing automation tasks and



specially visual inspection systems are one example.

To this end, we proposed a new visual quality inspection
model for light guide plates. Light guide plates (Feng et al.
2004) are one of the main optical components used in differ-
ent devices such as medical lighting fixtures and both com-
mercial flat panels and back-lit displays. In the LED LCD
panels as an example, the light from the LED lamp passes
through the light guide plate to be sprinkled on the surface
of the large screen. The main role of the light guide plate is
to distribute the light evenly and to illuminate the surface.
As such, it is very important to make sure there is no defect
on the plate and visual inspection process plays a key role to
identify possible defects.

Visual quality inspection of light guide plates is very chal-
lenging for a number of reasons; the low contrast between
the defect and the background, uneven brightness, and com-
plex gradient texture make identifying the possible defects
for an automated system tremendously difficult. As such,
identifying possible defects on light guide plates are still
done mostly manually.

Recently the promises of deep learning (Robinson et al.
2020; He et al. 2016; Reiss et al. 2021; Bergman and Hoshen
2020) has motivated the development of new high perform-
ing deep neural networks for different manufacturing tasks
for the purpose of improving the automation including the
inspection systems (Li and Li 2021; Shafiee et al. 2021; Li,
Li, and Dai 2021). However, this field of research is still
in its infancy given the constraints these types of systems
require to satisfy and the limitations need to be addressed,
including i) high efficiency requirements, ii) with high ac-
curacy and robustness, and iii) limited training data samples
of different defected. Building deep neural networks satis-
fying the aforementioned constraints is time-consuming and
usually impossible for non-expert users.

In this study, we take advantage of a machine-driven de-
sign exploration approach to specifically address the first
two challenges and to a certain degree the third challenge
of lacking enough training data by effectively exploring the
architecture design space to automatically identify a tai-
lored attention condenser network architecture (which we
name LightDefectNet) based on computational and “best-
practices” constraints.

The main contributions of the manuscript is as follow:

• A new visual quality inspection model for the light guide
plates.

• An efficient new neural network architecture designed
automatically by taking advantage of Generative Synthe-
sis framework.

• A novel heterogeneous columnar design structure to ac-
count both for efficiency and effectiveness of feature rep-
resentation in the designed deep neural network.

• Illustrating the effective of anti-aliasing modules com-
pared to the traditional downsampling approach in deep
learning structure.

• C omprehensive experimental results to evaluate the ef-
fectiveness of the proposed approach.

In the next section we describe the designed architecture and

the mythology followed by the comprehensive experimental
results.

Methodology

Deep Learning-Driven Light Guide Plate Surface
Visual Quality Inspection Workflow

The proposed deep learning-driven light guide plate surface
defect inspection workflow is tailored specifically for real-
world manufacturing environments and can be described as
follows (see Figure 1). During the light guide plate man-
ufacturing process, the light guide plates on an assembly
line is passed into a fully-integrated visual quality inspec-
tion (VQI) system. The VQI system is capable of conducting
high-speed captures of light guide plates to produce high-
quality images to be used for automated analysis as well
as parts quality tracking within a quality management sys-
tem (QMS). The captured images of the light guide plates
are then passed into an edge compute unit equipped with
LightDefectNet to conduct high-speed surface defect detec-
tion (the design of LightDefectNet will be described in de-
tail in the next section). The light on the VQI system would
display different colors depending on whether a defect is de-
tected on light guide plates being analyzed to alert an inspec-
tor, who may be tasked with multiple assembly lines at any
given time and the visual alert will allow to quickly go to
the appropriate line. An inspector may then use the inspec-
tion station on the fully-integrated VQI system to examine
the defective light guide plates detected using LightDefect-
Net to not only validate the results but also to remove the
defective light guide plates from the line.

Design of LightDefectNet via Machine-Driven
Design Exploration

In this study, we leverage the concept of Generative Synthe-
sis (Wong et al. 2018) to automatically identify the macro-
and micro-architecture designs of the proposed LightDefect-
Net.

Generative Synthesis The Generative Synthesis frame-
work (GS) is used to design and identify the efficient ar-
chitecture for the visual inspection model. Generative Syn-
thesis framework formulates the design exploration process
as a constrained optimization problem where the optimal
network architecture is determined by finding the optimal
generator G⋆(·) which can generate network architectures
{Ns|s ∈ S} maximizing a universal performance function
U (Wong 2019) subject to a set of constraints:

G⋆ = max
G

′

U
(

G(s)
)

s.t. 1g(G(s)) = 1 ∀s ∈ S, (1)

where S is a set of seeds. The set of constraints are defined
by a predefined set of operational requirements formulated
via an indicator function 1g(·). The synthesis process is done
within an iterative approach where at each step, the previous
generator Ḡ(·) is evaluated by an inquisitor I and based on
its newly generated architectures Ns. A new generator solu-
tion is evaluated based on the universal performance func-
tion U by an indirect evaluation process.



More specifically, GS synthesizes new architectures by
formulating the process as a constrained optimization prob-
lem where the efficient network architecture is generated to
satisfy different performance metrics such as accuracy and
efficiency. The generated models are evaluated by a univer-
sal performance function which leads the optimization to the
right path to reach a local optimal solution. This constrained
optimization is an iterative process and thus automatically
determines the optimal architecture based on the provided
requirements and input dataset, and therefore generates the
optimal architecture that is tailored specifically for this ap-
plication.

While GS is a generic neural architecture search method
that can be leveraged for the purpose of machine-driven
design exploration for any application, the operational re-
quirements we enforce in the form of constraints (as fol-
lows) along with the input dataset for this specific applica-
tion makes the search process itself customized specifically
for this application. Since this application in this study re-
quires high throughput, high-accuracy inspection that runs
on low-end edge compute hardware in the fully-integrated
visual quality inspection (VQI) system, we specified the op-
erational requirements around this to enable integrated de-
ployment in real-world manufacturing environments.

We define a residual design prototype (He et al. 2016) to
initialize the design process. The indicator function 1g(·) is
formulated such that it accounts for a combination of com-
putational and “best-practices” constraints driven by archi-
tecture design lessons learned over the years by the com-
munity: i) number of floating-point operations (FLOPs) is
under 100M FLOPs for resource-constrained manufactur-
ing scenarios, (ii) pointwise strided convolutions (first in-
troduced in the original residual network design (He et al.
2016) and continues to be leveraged in the recent RegNet
design (Radosavovic et al. 2020)) are restricted, as their use
can lead to considerable information loss within the net-
work, (iii) downsampling can only be conducted after the
input layer via antialiasing downsampling (AADS) (Zhang
2019), as they have been shown to significantly improve net-
work stability and robustness. Furthermore, we incorporate
attention condensers (Wong et al. 2020; Wong, Famouri, and
Shafiee 2020) as a viable design pattern into the machine-
driven design exploration process, which are highly effi-
cient self-attention mechanisms that learns and produces a
condensed embedding characterizing joint local and cross-
channel activation relationships for the purpose of selective
attention. How and where attention condensers are lever-
aged, along with the rest of the micro-architecture and
macro-architecture designs of LightDefectNet is left to the
machine-driven design exploration process to automatically
determine how best to satisfy the constraints.

Network Architecture Design The network architecture
design of LightDefectNet is shown in Figure 2. A number of
key observations can be made about the generated LightDe-
fectNet architecture;

1. Early-stage self-attention: it can be observed that visual
attention condensers are leveraged heavily in the early
stages of the network architecture. The presence of vi-

sual attention condensers in these early stages enhance
selective focus on important low-to-medium level visual
indicators pertinent to light guide plate defects, while at
the same time improving representational efficiency early
on.

2. Heterogeneous columnar design: a heterogeneous
combination of columnar design patterns is exhibited in
the proposed architecture design, with more indepen-
dent columns with fewer stages of intermediate inter-
action in the earlier stages but more interactions in the
later stages, which gives great balance between repre-
sentational power and disentanglement with efficiency.
Furthermore, the fully-connected (FC) layer exhibits a
columnar architecture where there are two softmax out-
puts which are then aggregated into the final softmax out-
put to improve generalization and robustness particularly
in low-data regimes.

3. Anti-aliased design: a heavy use of anti-aliased down-
sampling (AADS) operations is exhibited across the ar-
chitecture, which leads to improve robustness and sta-
bility compared to the use of traditional downsampling
operations such as max-pooling. In this study, due to the
columnar design of the FC layer, we leverage a loss func-
tion that maximizes the discrepancy between the soft out-
puts of the two FC columns to improve robustness and
generalization of LightDefectNet in low-data regimes.

4. Heterogeneous design diversity: heterogeneous mi-
croarchitecture and macroarchitecture design diversity is
exhibited across the architecture due to the ability for the
machine-driven design exploration strategy to determine
the optimal microarchitecture designs in a fine-grained
manner tailored around operational constraints and strik-
ing a strong balance between accuracy and efficiency.

Results & Discussion

The performance of the quality inspection framework is
evaluated in regard to the designed LightDefectNet deep
learning model used in the proposed framework. To ex-
plore the efficacy of the proposed LightDefectNet for light
guide plates defect detection, we evaluated its performance
on the LGPSDD (Light Guide Plate Surface Defect Detec-
tion) benchmark (Li, Li, and Dai 2021).

Benchmark data: The LGPSDD (Light Guide Plate Sur-
face Defect Detection) benchmark (Li, Li, and Dai 2021)
used in this study consists of 822 images captured of light
guide plates moving on a conveyor belt using an image ac-
quisition platform that employs a line-scan camera and a
multi-angle lighting source. As shown in Figure 3 the light
guide plates captured in the LGPSDD benchmark has high
physical diversity in terms of light guide point density, light
guide brightness, as well as defect morphology and size (Li,
Li, and Dai 2021). This resulted in 422 defective samples
and 400 non-defective samples, with a training/test split of
25%/75% as described in (Li, Li, and Dai 2021) to better
mimic the typical low annotated data scenario seen in man-
ufacturing applications. The images are 224 × 224 in size,
and these same dimensions were used in the input dimen-
sions for the tested neural network architecture designs in



Figure 2: LightDefectNet architectural design; the proposed attention condenser network architecture design is produced via
a machine-driven design exploration, and possesses a heterogeneous columnar design, heterogeneous macroarchitecture and
microarchitecture design diversity, early-stage self-attention via visual attention condensers (VAC), and anti-aliased downsam-
pling (AADS) components for a great balance between detection accuracy, robustness, and complexity making it well-suited
for this type of high-throughput and resource-constrained scenarios. Note that GAP stands for global average pooling.

Model
Acc Param FLOPs Inf. Speed
(%) (M) (M) (ms)

ResNet-50 92.8 25.6 8200 83

EfficientNet-B0 98.0 5.3 780 88

MnasNet 89.4 3.9 630 89

MobileNetV3 (Large) 97.8 5.4 438 56

LightDefectNet 98.2 0.77 93 10

Table 1: Quantitative results of the proposed LightDefectNet
architecture compared to other tested architectures.

this study.

The lack of samples is a major limitation for real-world
manufacturing visual inspection scenarios, in particular in
the light guide plate inspection application being tackled in
this paper. As such, this low-data challenge in real-world
creation and deployment of machine learning for manu-
facturing visual inspection is very important to address.
The trend in the industry is to take advantage of off-the-
shelf neural network architecture designs and train against
a dataset, which would not work well in these types of
real-world manufacturing applications. As such, the limited
training data samples that is leveraged as a part of the exper-
imental setup and the practical considerations that we took
into account in the design of the proposed system allows us
to better understand the performance of the system in a more
realistic manufacturing scenario.

Evaluated architectures: In this study, in addition to the
proposed LightDefectNet, we evaluated the performance of
the ResNet-50 (He et al. 2016) network architecture on the
same LGPSSD benchmark for reference purposes, as well as

Defective Non-defective

Figure 3: Example of the light guide plates captured in the
LGPSDD benchmark for both defective and non-defective
samples.

several state-of-the-art efficient deep neural network archi-
tectures, including EfficientNet-B0 (Tan and Le 2019), Mo-
bileNetV3 (Howard et al. 2019), and MnasNet (Tan et al.
2018). All architecture designs and experiments were con-
ducted within the Pytorch deep learning framework. In ad-
dition to quantitatively assessing the accuracy of each deep
neural network architecture, we also evaluated the architec-
tural complexity, theoretical computational complexity, as
well as inference speed on an embedded ARM v8.2 64-bit
2.26GHz processor.

Training Policies: All tested network architectures were
trained using stochastic gradient descent optimization for
100 epochs and batch size of 5. Different learning rates were
used for optimal performance based on empirical analysis:
5.0 × 10−5 for ResNet-50, 1.0 × 10−3 for EfficientNet-
B0 and LightDefectNet, 1.3 × 10−3 for MobileNetV3, and



3.1× 10−4 for MnasNet.

Results

Quantitative performance and complexity: Table 1 il-
lustrates the quantitative performance, architectural com-
plexity, computational complexity, and inference speed of
the proposed LightDefectNet architecture compared to the
ResNet-50 architecture as well as several state-of-the-art
efficient architectures. A number of observations can be
made from the quantitative results. First of all, it can
be observed that the proposed LightDefectNet architecture
consists of just ∼770K parameters, which is significantly
smaller than ResNet-50 as well as the competing state-
of-the-art efficient architectures. More specifically, Light-
DefectNet is ∼33× smaller compared to the ResNet-50
architecture while achieving higher accuracy, and ∼6.9×
smaller compared to the highly efficient EfficientNet-B0
(the most accurate architecture outside of LightDefectNet).
Second, in terms of computational complexity, the proposed
LightDefectNet architecture requires only ∼93M FLOPs,
which is significantly lower than ResNet-50 as well as the
tested state-of-the-art efficient architectures. More specif-
ically, LightDefectNet requires ∼88× fewer FLOPs com-
pared to the ResNet-50 architecture, and ∼8.4× fewer
FLOPs compared to EfficientNet. Third, from an accuracy
perspective, LightDefectNet achieved the highest accuracy
amongst the tested architectures. These results illustrate the
strong balance achieved by the proposed LightDefectNet
in terms of accuracy, architectural complexity, and com-
putational complexity, making it very well-suited for high-
performance light guide plate defect detection in resource-
constrained manufacturing environments.

Embedded inference speed: We further explore real-
world operational efficiency of the proposed LightDefect-
Net architecture in embedded scenarios by evaluating its
run-time latency (at a batch size of 10) on an embedded
ARM v8.2 64-bit 2.26GHz processor and compared with
the other tested architectures. It can be observed from Ta-
ble 1 that the proposed LightDefectNet architecture achieves
a runtime latency of 10 ms per sample, which is signifi-
cantly lower than ResNet-50 as well as the tested state-of-
the-art efficient architectures. More specifically, LightDe-
fectNet is 8.3× faster when compared to the ResNet-50 ar-
chitecture, 8.8× faster when compared to the EfficientNet-
B0 architecture, and 5.6× faster when compared to the Mo-
bileNetV3 architecture (the fastest architecture outside of
LightDefectNet). The significant speed advantages of the
proposed LightDefectNet architecture when compared to
the other tested architectures make it very well-suited for
use on embedded edge compute devices for high-throughput
manufacturing scenarios, as well as illustrate the effective-
ness of utilizing a machine-driven design exploration strat-
egy with “best-practices” constraints for creating highly cus-
tomized network architectures tailored specifically for in-
dustrial tasks in manufacturing scenarios.

Deployment: In terms of path to deployment, here we
discuss the general workflow of a deployable VQI system
for light guide plate inspection (realized around a real-world
commercial VQI system available in the market) and how

it is possible to integrate the generated efficient architecture
based on the proposed machine-driven design exploration
approach for detecting defects on light guide plates in a prac-
tical, high-throughput manner into this VQI system. Fur-
thermore, the machine-driven design exploration approach
used in this study has been deployed for real-world opera-
tional scenarios and offered to users as a Generative Synthe-
sis development platform from DarwinAI, and the resulting
VQI system described in this study is an Automatic Mixed-
Assembly Inspection (AMI) system from DarwinAI that is
available in commercial form.

Conclusions

We proposed a new visual quality inspection framework for
light guide plate surface inspection. We utilize the machine-
driven design exploration with computational and “best-
practices“ constraints as well as L1 paired classification dis-
crepancy loss for the creation of highly compact deep neural
network architectures for the task of light guide plate sur-
face defect detection. The proposed framework use the de-
signed efficient model to inspect the samples in real-time for
identifying the possible defect. Experimental results demon-
strated that the proposed LightDefectNet was able to achieve
a detection accuracy of ∼98.2% on the LGPSDD bench-
mark while possessing significantly reduced architectural
and computational complexity when compared to state-of-
the-art efficient deep neural network architectures. Further-
more, we demonstrated that the proposed LightDefectNet
achieves significantly faster inference speed on an embed-
ded ARM processor, making it very well-suited for light
guide plate defect detection in high-throughput, resource-
constrained manufacturing scenarios. As a future direction,
we aim to further explore the leveraging of this machine-
driven design exploration strategy for producing highly effi-
cient yet high-performing deep neural network architectures
for other critical manufacturing applications as well as for
other sensing modalities such as acoustic sensors for predic-
tive maintenance.
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