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Abstract 

Creating superior lanthanide-activated inorganic phosphors is pivotal for advancing energy-efficient LED 
lighting and backlit flat panel displays. The most fundamental property these luminescent materials must 
possess is effective absorption/excitation by a blue InGaN LED for practical conversion into white light. 
The 5d1 excited state energy level of lanthanides, which determines the excitation peak position, is 
influenced by the inorganic host structure, including the local environment, crystal structure, and 
composition, making it challenging to predict in advance. This study introduces a new extreme gradient 
boosting machine learning method that quantitatively determines a phosphor’s longest (lowest energy) 
excitation wavelength. We focus on the Ce3+ 4f →5d transition due to its well-defined 5d1 energy level 
observed in excitation and diffuse reflectance spectra. The model was trained on experimental data for 357 
Ce3+ cation substitution sites sourced from literature and in-house measurements and ultimately 
experimentally validated through the successful synthesis of a novel, blue-excited, green-emitting phosphor: 
Ca2SrSc6O12:Ce3+. This compound’s excitation under commercial blue LED wavelength aligned 
remarkably well with the model’s predictions. These results highlight the transformative potential of data-
driven approaches in expediting the discovery of blue-absorbing phosphors for next-generation LED 
lighting. 

1. Introduction 

Solid-state lighting, used today in applications ranging from general in-home and commercial 
illumination to high-resolution display technologies, was made possible by the development of blue-
emitting indium gallium nitride (InGaN) LED chips.1,2 Blue LEDs offer outstanding luminous efficacy, a 
small, durable architecture, a long usable lifetime, eco-friendly composition, and, most notably, serve as 
the starting point for producing energy-efficient white light. Indeed, converting this nearly monochromatic 
light source into a functional broad-spectrum white light is achieved by down-converting the LED’s blue 
(~440 nm to ~470 nm) emission using one or more inorganic phosphors. The phosphors absorb and partially 
convert the blue light into usually yellow/green and red wavelengths, which in combination cover most of 
the visible spectrum, creating white light. Unfortunately, very few unique commercially produced 
phosphors are compatible with blue LEDs, with less than ten materials typically meeting the industry’s 
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strict requirements.3 
Designing new viable phosphors is an active and ongoing research effort that is an intrinsically 

multidimensional challenge, necessitating a deep understanding of phosphor chemistry.4 Phosphors are 
inorganic host compounds, like oxides, nitrides, or halides, typically substituted with Ce3+ or Eu2+ that acts 
as the luminescence center or activator.5–8 These two lanthanide ions are primarily used because they 
possess a broad emission with selection rule allowed 4f↔5d electronic transitions. Depending on the 
interaction between the phosphor host and the activator ion, various optical responses can be achieved. 
Research has predominantly focused on understanding and predicting the factors controlling a phosphor’s 
thermal quenching (temperature-dependent optical behavior) and photoluminescence quantum yield 
(PLQY), with the goal of identifying specific factors that support thermally robust photoluminescence and 
near-unity PLQYs.9–13 Advances in high-throughput experimental and data-driven approaches have also 
improved the ability to produce desirable emission colors.14–17 However, realizing phosphor’s most critical 
property—its absorption of blue LED light—is still primarily guided by empirical understanding or costly 
first principles computational modeling.18–20 Additionally, blue light absorption by lanthanide-substituted 
phosphors, especially Ce3+, is relatively uncommon outside of the garnet family of materials. This has 
prompted researchers to instead consider UV (~365 nm) or violet (~400 nm) excited phosphors despite their 
limited potential for commercialization. The recent surge of phosphors published operating with these 
alternative LEDs underscores the need for new approaches that can spur the discovery of suitable blue-
excited materials. 

The position of the excitation band is set by crystal-chemical interactions between the inorganic 
phosphor host and the lanthanide ion. In the case of Ce3+ and Eu2+, these interactions cause the 5d orbitals 
to experience two well-known effects. The first concerns the host ligands (anions) stabilizing the centroid 
of the 5d orbital energy by withdrawing electron density and reducing electric repulsion.21–25 This 
phenomenon, called the nephelauxetic effect or centroid shift, is dominated by the electronegativities and 
atomic polarizabilities of the coordinating anions, among other factors. The second effect, crystal field 
splitting, separates the nominally degenerate 5d orbitals based on the local coordination environment, such 
as coordination number, polyhedron volume, bond length, and coordination geometry (symmetry).26–30 For 
example, lower coordination numbers with shorter bond lengths facilitate stronger crystal field splitting, as 
in octahedral or cubic environments, whereas larger sites like dodecahedral environments tend to have 
weaker crystal field splitting. The combined centroid shift and crystal field splitting generates a redshift 
(D), which represents the energy difference between the initial free ion (Ce3+: 6.17 eV; 201 nm and Eu2+: 
4.22 eV; 294 nm) and the position of the lowest energy 5d orbital (5d1 orbital) when substituted in the 
inorganic host.31–34  

Considering the factors influencing the 5d1 energy level, and thus the excitation wavelength of the Ce3+ 
or Eu2+ phosphor (4f→5d1), prior efforts have employed density functional theory (DFT) approaches to 
understand this transition.35–37 These calculations are analogs to time-dependent DFT methods routinely 
employed for molecules, but they remain relatively uncommon in the solid state, primarily due to their high 
computational cost. In extended solids, particularly Ce3+-doped phosphors, the energies and relative 
oscillator strengths of the 4f→5d transitions can be calculated using lanthanide-centered defect clusters 
within the host crystal structure. For example, prior work by our group and others have performed quantum 
chemical, wave-function-based complete active-space self-consistent-field (CASSCF) and second-order 
many-body perturbation theory (CASPT2) calculations on Ce3+-centered embedded clusters.38–43 These 
calculations have been used to understand how local coordination environments can influence a phosphor’s 
absorption/excitation band position and reveal rare-earth substitution site preference.37 The difficulty with 
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these calculations is that they are mainly helpful in understanding a phosphor’s excitation spectrum after 
their discovery. Moreover, their computational cost is high; large supercells and hybrid functionals are 
required to model the dilute lanthanide substitution. Consequently, it is impractical to use high-throughput 
calculations to uncover the structure-composition trends that guide lanthanide excitation band position, 
thereby limiting prediction or screening potential. 

Here, the 5d1 excited state energy level position is effectively predicted through a new supervised 
machine learning model leveraging the extreme gradient boosting (XGBoost) algorithm. We constructed a 
dataset containing experimentally measured 5d1 excitation energies for Ce3+ in 357 unique cation 
substitution sites across 337 different host materials, meticulously compiled from peer-reviewed studies 
and in-house measurements. Ce3+ is the first lanthanide ion considered due to the straightforward 
experimental measurement of the redshift D, and therefore 5d1 energy, using optical spectroscopy. A feature 
set was engineered to reflect the dominant factors influencing the 4f→5d1 optical transition by incorporating 
information on the local coordination environment, broader host crystal structure information, and chemical 
composition characteristics. Recursive feature elimination (RFE) and leave-one-group-out cross-validation 
(LOGO-CV) were employed to ensure model robustness and avoid over-fitting. The model’s effectiveness 
for identifying blue-excited materials was then experimentally validated by screening for Ce3+ substituted 
phosphors with excitation band positions that match standard InGaN LEDs. A promising candidate material, 
Ca2SrSc6O12 substituted with Ce3+, was identified, synthesized, and characterized to confirm the model’s 
predictions, emphasizing the value of our new approach in guiding the discovery and design of future 
phosphors. 

 

2. Experimental Methods 

2.1 Prediction Model Construction 

The model to predict 5d1 required data collection and feature engineering, as discussed below. Target 
values were collected from peer-reviewed publications regardless of the energy scale and then converted 
into eV for model training. Some of the most important features involved our group’s previously reported 
machine learning prediction models for relative permittivity (εr, dielectric constant) and centroid shift (εc). 
These models were both updated and revised to get the most reliable input features for this work.44 The 
relative permittivity model utilized a training data set of 2,254 values extracted from the Materials Project 
and cross-referenced with Pearson’s Crystal Database to ensure only experimentally reported compounds 
were used in the training set. The range of εr value was further limited to between 0 and 8, reflecting the 
typical relative permittivity range for most inorganic host structures. XGBoost was employed for the εr 
model, and the model was validated through leave-one-out-cross-validation (LOO-CV)45,46, achieving an 
R2 of 88.7% (Figure S1a), comparable with the previously published model. Subsequently, the centroid 
shift model was updated using the revised predicted relative permittivity values, and εc was similarly 
optimized with XGBoost, yielding a LOO-CV R2 of 90.1% (Figure S1b).  

The main model in this work, predicting the 5d1 energy, employed the tree-based XGBoost algorithm 
due to its demonstrated effectiveness in handling small and noisy datasets while mitigating overfitting. This 
was crucial considering the relatively modest size of the training set. Hyperparameter optimization was 
conducted with leave-one-group-out-cross-validation. It is necessary to group targets by composition 
because select targets with polymorphs or multiple substitution sites in a single phosphor host typically 
have very similar feature sets. LOGO-CV can prevent potential data leakage from this shared information. 
The optimization process encompassed 11 hyperparameters of the XGBoost model, including tree boosters 
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that regulate individual tree models (e.g., learning rate, max depth, and subsample), overfitting 
regularizations (e.g., L1 and L2 regularization), and the base score parameter. The models were scored 
using mean absolute error (MAE) to quantify average model performance and assess actual deviations in 
predicted values, while recursive feature elimination was implemented to address multicollinearity and 
further limit overfitting.47 After RFE, the feature set was reduced from 124 initial features to 44 
scientifically relevant features (Table S1). The XGBoost model was finally retrained using this refined 
feature set, and hyperparameters were re-optimized with analysis by LOGO-CV. All model construction 
and implementation were done within the Python ecosystem, leveraging Scikit-learn libraries.48 

2.2 Predicted Phosphor Synthesis and Characteristic Measurements 

Ca2SrSc6O12:Ce3+ selected for experimental validation was synthesized by solid-state reaction starting 
from CaCO3 (Alfa Aesar, 99.0%), SrCO3 (Alfa Aesar, 99%), Sc2O3 (Thermoscientific, 99.99%), and CeO2 
(Sigma Aldrich, 99.995%). Each component was weighed in the appropriate stoichiometric ratio, with 1 
mol% of the lanthanide activator added. The mixed starting reagents were ground in an agate mortar and 
pestle using hexane as a wetting medium and then further milled for 30 min in a high-energy ball mill (Spex 
800 M Mixer/Mill). The mixture was pressed into a 6 mm diameter pellet and placed on a bed of sacrificial 
powder in an alumina crucible. The pellet was first heated to 1100°C for 10 h with a heating and cooling 
rate of 3°C/min under flowing 5% H2/ 95% N2 gas. The product was then ground in hexane, pelletized again, 
and heated a second time to 1300°C for 8 h with a heating and cooling rate of 3°C/min under flowing 5% 
H2/ 95% N2 gas. 

The product was characterized using powder X-ray diffraction on an X’Pert PANalytical Empyrean 3 
equipped with Cu Kα radiation (λ = 1.54056 Å). Additionally, high-resolution synchrotron powder X-ray 
diffractograms were collected at 9B beamline of PLS-II. Rietveld refinements were performed using the 
General Structural Analysis System II (GSAS-II) software.49 The background was described using a 
Chebyshev-1 function, and the peak shapes were modeled using a pseudo-Voigt function. 
Photoluminescence measurements involved mixing the polycrystalline products in an optically transparent 
silicon epoxy (United Adhesives Inc., OP 4036) and depositing the combination onto a quartz slide 
(Chemglass). Photoluminescent excitation and emission and temperature-dependent luminescence 
measurements were obtained using a PTI fluorescence spectrophotometer with a 75 W xenon arc lamp for 
excitation. A Janis cryostat (VPF-100) was employed to establish a temperature-controlled environment 
from 80 K to 640 K. The photoluminescent quantum yield was determined following the method of de 
Mello et al.50 using a Spectralon-coated integrating sphere (150 mm diameter, Labsphere). 
Photoluminescent lifetimes were measured using a 455 nm NanoLED equipped with the Horiba DeltaFlex 
Lifetime. 

3. Results and Discussion 

3.1 5d1 Data Extraction and Feature Engineering 

The construction of the machine learning model to predict the 5d1 excitation energy commenced with 
the compilation of 357 experimentally measured 5d1 energy levels, also reported as redshift values (D), 
from the literature as well as data collected in-house.34 These data represent 337 individual host structures, 
including seven crystal polymorphs and compounds with multiple possible crystallographically 
independent cation substitution sites in a single host crystal structure. Diffuse reflectance and 
photoluminescence excitation spectra were both used to obtain reliable 5d1 target values. The distribution 
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of collected target values shows that the training set continuously covers the entire excitation wavelength 
range from UV to blue/green (Figure 1a). Notably, most of the population is concentrated in the UV range, 
with only ~4% of Ce3+ excitation target values falling in the typical blue LED emission range (440 nm - 
470 nm), emphasizing the challenge of discovering blue-excited Ce3+ phosphors. The excitation 
wavelengths can be analyzed based on their meta-data to understand the physical and chemical properties 
that dictate excitation wavelength. The relationship between 5d1 values and the coordination of the 
polyhedron occupied by Ce3+, plotted in Figure 1b, highlights that higher Ce3+ coordination number (>8) 
rarely generates excitation in the blue range due to smaller crystal field splitting energies (and thus lower 
D). A correlation between 5d1 values and the radius difference between Ce3+ and the substituted cation 
further revealed that smaller sites tend to generate blue excitation due to stronger crystal field splitting 
(Figure 1c). When categorized by the host structure anion type, the target values also effectively 
demonstrate the trend of the nephelauxetic series21,25 (Figure 1d), emphasizing the importance of 
compositional information such as electronegativity, electron affinity, and polarizability. This basic 
materials informatics analysis is already helpful for conceptualizing phosphor design and can also guide 
feature set engineering.  

Figure 1. Target value distribution of the Ce3+-substituted phosphors collected in the training set grouped by (a) 
excitation wavelength, (b) Ce3+ coordination number of the crystallographically independent substitution sites, (c) 
ionic radius difference between the substituted cation and Ce3+, and (d) the host anion type. The blue-shaded region 
highlights conventional emission wavelengths of blue-emitting InGaN LED chips. 

An optimal set of relevant features was subsequently developed to create a quantitative machine-
learning model. An initial 124 features were assembled, encompassing characteristics from the local 
environment of the cation substitution site (13 features), host crystal structure information (14 features), 
and host composition (95 features), with the complete set listed in Table S1. The local cation site features 
are necessary to estimate crystal field splitting for the Ce3+ 5d orbitals. These features include the 
polyhedron volume, coordination number, and local symmetry. Features were also incorporated to describe 
the host crystal structure, which is essential for distinguishing polymorphic phosphors. These crystal 
structure attributes include space group number, volume of unit cell, volume per atom, volume per Z, and 
unit cell parameters, among other features. The cation substitution site and crystal structure information 
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were extracted from the Materials Project database or experimental crystallographic information files from 
the Inorganic Crystal Structure Database (ICSD) and Pearson’s Crystal Database (PCD).51–53 In cases where 
the experimentally reported host crystal structure contains statistical site disorder, the 
OrderDisorderedStructureTransformation module from the Pymatgen library was used to predict a low-
energy ordered arrangement from which the features were extracted.54 The compositional features were 
finally developed by relating elemental properties to the stoichiometric composition. Each elemental feature 
(e.g., polarizability, electron affinity, etc.) was expanded into five variables (maximum, minimum, average, 
difference, and standard deviation) to capture multidimensional relationships between features and target 
values. Two physics-based features were also added: relative permittivity (εr, dielectric constant) and 
centroid shift (εc) because they are understood to impact the nephelauxetic effect and, therefore, the 5d1 
position.44 These values depend explicitly on the host material and necessitated updated versions of our 
group’s previously published supervised machine-learning regression models for these properties.  

3.2 Machine Learning the 5d1 Energy Level 

The 5d1 energy level prediction model was first constructed using target values from 357 unique cation 
sites. XGBoost was selected for its effective overfitting regulation methods since the training set contains 
only a few hundred target values. During model training, LOGO-CV was implemented to ensure 
appropriate inclusion of the training data while mitigating potential biases associated with n-fold cross-
validation. The initial model with all 124 features showed an MAE of ±0.159 eV (RMSE = 0.160 eV) and 
an R2 of 84.3 % (Figure S2). It is worth noting that this ±0.16 eV MAE manifests differently across the 
wavelength scale due to the non-linear relationship between energy and wavelength. For instance, the MAE 
when 5d1 is between 3.50 eV and 3.65 eV corresponds to a wavelength difference of only approximately 
15 nm (from ~354 nm to ~339 nm), whereas at lower energy, the same energy gap can result in a more 
substantial wavelength difference, such as a 27 nm gap between 2.60 eV (~477 nm) and 2.75 eV (~450 nm).  

Figure 2. (a) RFE result with the initial XGBoost model. 44 features were chosen with minimal MAE. (b) Top 10 
important features of this prediction model in terms of gain (F score). (c) Plot of experimental 5d1 energy versus 
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predicted 5d1 by the final model. The MAE of this initial model is ±0.153 eV with R2 of 83.8 % 

A notable advantage of XGBoost, and machine learning in general, is the ability to analyze feature 
importance, thereby facilitating the interpretation of the relationship between targets and features. Therefore, 
a revised model was prepared using recursive feature elimination to iteratively remove the least important 
feature(s) and track model performance with each refined feature set. Figure 2a illustrates the change in 
model performance starting from the complete 124 feature set. Removing the least important feature(s) in 
each step shows that the model performance remains nearly constant based on the MAE until there are only 
~40 features. Further feature reduction causes the model’s error to exponentially increase when there are 
fewer than 10 features. A balance of features to performance suggests that 44 features are a reasonable 
number to build a reliable model. Analyzing the feature importance scores for the top 10 out of these 44 
features indicates that the most critical features include the composition’s average Pauling electronegativity, 
reflecting the host structure’s nephelauxetic effect (Figure 2b). This is followed in importance by the 
predicted relative permittivity and centroid shift, corroborating the direct influence of the nephelauxetic 
effect on the 5d1 position. The fifth most important feature, coordination number, supports the influence of 
crystal field splitting on the 5d1 energy level. The next feature, chemenv_CN, also relates to the coordination 
environment but considers geometrical properties too.55 Table S1 also provides all 44 selected features, 
marked with bold text. The physical relevance of these significant features to the 5d1 energy level supports 
and enhances our understanding of the underlying physical mechanisms governing the 4f→5d1 transition. 

The final operational XGBoost model re-trained using the 44 selected features exhibited an MAE of 
±0.153 eV (RMSE = 0.154 eV) and an R2 of 83.8 %, indicating satisfactory model performance (Figure 
2c). This model shows modest improvements, but the smaller feature set reduces the likelihood of 
overfitting. The remaining prediction uncertainty likely stems from various sources. In some respects, it is 
simply a function of the limited data set size. However, it could also have originated from the raw 
experimental training data used to build the model. During the data cleaning process that was conducted 
before building the operational model, several training data problem cases were identified that could 
generate uncertainty. First, significant discrepancies were observed in the reported 5d1 values when 
comparing the same compound across multiple independent publications and data collected in our lab 
during reproduction efforts. Sometimes the most reliable data was found in archived literature, while in-
house measurements were more reliable in other instances. Secondly, publications rarely provide the 
excitation spectrum across different Ce3+ concentrations, which can affect the excitation peak position by 
altering lattice parameters or preferred site selectivity. For example, the excitation spectrum of 
NaCaBO3:Ce3+ exhibited spectral broadening across six different Ce3+ concentrations (0.5 % to 5%), with 
λex,max shifting between 347 nm to 355 nm,56 whereas BaSi7N10:Ce3+ provided a λex,max of 325 nm at 0.5% 
and 1% Ce3+ concentration, respectively.57 However, many studies only provided one excitation spectrum 
at one optimal Ce3+ concentration. Consequently, the machine learning model did not employ the Ce3+ 
concentration as a feature, even though this information would likely improve the model’s predictive 
accuracy. Furthermore, the 4f→5d1 excitation peak is not always clearly reported in the literature or there 
can be conflicting reports. For instance, one publication reported a λex,max=320 nm for CaAl2B2O7:Ce3+.58 In 
contrast, another paper suggested that the strongest excitation peak can be deconvoluted into a strong peak 
at 310 nm (5d2) and a weak peak at 338 nm (5d1).59 Data that were were not abundantly unambiguous were 
removed from the training data set. Observations such as these show the complexity of accurately building 
a prediction model through experimental data and highlight the need for careful consideration of data 
selection in future refinements of the predictive model.  
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Figure 3. Plot of experimental 5d1 energy versus predicted 5d1 by the final model with fixed cation site information 
for BaYSi4N7:Ce3+. This model with a hypothetical “(Ba1-xCex)YSi4N7” has an MAE of ±0.153 eV and an R2 of 83.8 %  

The model serves as more than just a regression prediction tool. It can also provide critical insights by 
evaluating reported data. For instance, during the first training phase, the data set contained CaSnO3:Ce3+ 
with an excitation peak position of 246 nm (5.04 eV), as reported in the literature.60 During early training 
runs, this compound was one of the most significant outliers in our trained model. Reproducing this 
compound in-house revealed the experimental excitation peak was closer to 378 nm (3.28 eV), which makes 
more crystal-chemical sense. Subsequent training iterations incorporated this updated value, and the 
model’s predictions aligned with experimental results, underscoring the use of data-driven techniques to 
refine and enhance data reliability.  

Additionally, this model can aid in analyzing experimentally measured excitation spectra to help 
determine the most likely substitution site of an activator ion for phosphors containing multiple possible 
cation substitution sites. In systems with no strong energetic preference for the activator ion to substitute 
on a specific crystallographic site, the lanthanide may occupy multiple crystallographic positions 
concurrently, leading to an ensemble optical response. This phenomenon is evident in the training dataset, 
which includes 13 compounds reported with Ce3+ on multiple unique crystallographic substitution sites. 
Determining the exact location of lanthanide ions in the host crystal structure to deduce their coordination 
environment requires various complementary spectroscopic techniques. Yet, sometimes, the results may not 
be conclusive, and a best guess is provided. An interesting outcome following this type of substitutional 
assignment was observed with this model for BaYSi4N7:Ce3+, shown as the highlighted point in Figure 3.61 
Conventional phosphor design principles suggest that the Ce3+ should preferentially substitute for cation 
sites with similar size, oxidation state, and coordination number. Some evidence is provided in the original 
report61 supporting that Ce3+ may occupy the Y3+ site; however, when building the model with Ce3+ on the 
Y3+ site, a substantial discrepancy of 0.87 eV between the experimental (339 nm; 3.66 eV) and predicted 
(445 nm; 2.79 eV) 5d1 values was found, rendering it the most significant outlier. A hypothetical model was 
created here that placed Ce3+ on the Ba2+ site instead. Even though they have different oxidation states, Ce3+ 
substituting for Ba2+ is relatively common, and this hypothetical model yielded an expected value of 373 
nm (3.32 eV), closely matching the experimental measurement. This finding demonstrates that machine 
learning can aid in interpreting optical properties and offer valuable insights into experimental results. 
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3.3 Screening for Ce3+ Substituted Inorganic Phosphors with Target Excitation 

To demonstrate the robustness, reliability, and utility of the final model for phosphor identification, the 
model was used to screen a wide dataset of candidate materials prior to experimentally investigating a 
promising candidate. All 153,188 materials listed in the Materials Project database,51 including both 
experimentally reported and computationally predicted structures, were initially considered and then 
refined according to a set of heuristic design rules. The first of these rules was based on host composition. 
Potential phosphors were required to include the yellow-marked elements in Figure 4, which represent 
likely Ce³⁺ substitution sites based on the literature.12 These elements all have sufficiently large ionic radii 
and reasonable coordination numbers ranging from rCN=6=1.01 Å to rCN=12=1.34 Å to support Ce3+ 
substitution.62 The polyhedral backbone of the host was then limited to elements marked in light blue 
(cations) and dark blue (anions) based on common host chemistries contained in the training data. Y3+ and 
Lu3+ have been reported as both substitution sites or backbone cations due to their slightly smaller ionic 
radii than Ce3+. This list also excludes elements that could interfere with Ce3+ photoluminescence (e.g., Cr3+, 
Mn2+, Fe3+),63–65 elements like Pb, Tl, and Cd due to sustainability and toxicity concerns, and expensive 
metals like Au, Pt, and Ir. After this filtering, 21,682 compounds that included at least one yellow and one 
dark blue-marked element, with optional light blue elements, were selected. 

  

Figure 4. (a) The target elements for candidate phosphor host compositions. Elements forming the polyhedral 
backbone of the host structure are marked with the cation as light blue and the anion as dark blue. The possible Ce3+ 
substitution site cations are marked in yellow. (b) Schematic diagram of selecting possible host structures from 
Materials Project. 

In addition to elemental criteria, further screening was applied to ensure the suitability of the host 
compounds for Ce3+ photoluminescence. Specifically, to prevent (thermal) ionization-induced temperature-
dependent quenching of the Ce³⁺ emission, the bandgap (Eg) should be larger than the energy of target 
excitation wavelengths. Given that this work targets 450 nm excitation (2.76 eV), only host structures with 
calculated electronic Eg,DFT exceeding 2.1 eV were retained. This threshold accounts for the well-known 
underestimation of band gaps at the PBE level (which are available in the Materials Project). Considering 
this condition, the candidate set was further reduced to 10,575 compounds, ensuring a more reliable 
selection of potential hosts.66 Next, compounds present in the training set or exhibiting improper crystal 
chemistry (e.g., abnormal coordination numbers not purged in earlier down selection) were removed, 
reducing the dataset to 7,525 possible host crystal structures. Of these candidate hosts, around 90% have 
multiple crystallographically-distinct likely substitution sites for Ce3+, expanding the final set of potential 
lanthanide substitutions to 54,885 possible locations for Ce3+, for which their 5d1 energy was predicted. 
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Figure 5. (a) Distribution of predicted excitation wavelengths for the 54,885 Ce3+-substituted cation sites of possible 
host structures. The blue-shaded region highlights the InGaN LED emission range. (b) A plot mapping the DFT-
calculated band gap (PBE-level), predicted Debye temperature, and the 5d1 prediction. The black-edged data point 
demonstrates Ca2SrSc6O12:Ce3+. 

Plotting these 54,885 potential Ce3+-substituted cation sites from the 7,525 unique host candidates in 
Figure 5a reveals that most Ce3+ phosphors are excited in the UV range, agreeing with the literature. Only 
494 cation sites (~0.9%) in 211 unique host structures (2.8%) were predicted to have blue excitation, 
highlighting the challenge of discovering blue-excited Ce3+-based phosphors. Plotting the predicted 
excitation wavelengths against the host anion type showed that the most promising candidates are 
nitride/selenide/sulfide-containing compounds or garnet-based oxide crystal structures with gallium or 
germanium (Figure S3). These are classically understood to have the most significant redshifts and 
compatibility with blue LEDs.8,21,24  

Selecting a blue-excited phosphor from this carefully screened list appears straightforward once the 
machine-learning predictions are made. However, compatibility with a blue LED chip doesn’t guarantee 
practicality. To further accelerate phosphor host selection, this model was paired with additional proxies for 
phosphor performance as part of our selection pipeline. Figure 5b presents a sorting diagram of predicted 
5d1 values versus the host material’s band gap calculated at the DFT(PBE) level of theory (Eg,DFT). A wide 
bandgap is crucial for thermally robust Ce3+ photoluminescence. An interesting trend is observed here. 
There is a negative correlation between excitation wavelength and bandgap. Ce3+ substituted compounds 
with very wide bandgaps (~6 eV) are unlikely to be useful with blue LED chips due to high ionicity, which 
leads to a small centroid shift and weak crystal field splitting. Therefore, finding materials with sufficiently 
long wavelength excitation for industry applications will require a careful balance with the host material’s 
bandgap. A second proxy that is well-regarded for correlating with a phosphor’s photoluminescent quantum 
yield (PLQY) is the host structure’s Debye temperature.10,12 Phosphors with relatively high Debye 
temperatures and, thus, greater structural rigidity tend to exhibit higher PLQYs. Our group previously 
developed a machine learning model to predict the Debye temperature of host structures.5 By incorporating 
this model into our analysis, as shown by the color of the data points in Figure 5b, we observe that many 
materials within the blue LED excitation range are predicted to have moderate to low Debye temperatures 
(≤ 500 K). However, some data points exhibit Debye temperatures greater than 600 K, indicating the 
potential to discover thermally robust, high photoluminescence quantum yield (PLQY) novel phosphors 
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within this prediction set. Upon further analysis, many of the materials in this range are associated with 
garnet-type crystal structures or are nitrides, which are common blue-excited Ce3+ phosphor hosts. The list 
of predicted Eg,DFT, Debye T, and 5d1 levels is available on GitHub (https://github.com/BrgochGroup).  

After a thorough review of potential phosphor host compounds from this screened set, a novel 
composition was identified for synthesis. Ca2SrSc6O12:Ce3+ stood out due to its unique structure compared 
to other candidates while still suggesting impressive performance potential (5d1 = 2.94 eV or 422 nm, an 
Eg, DFT = 3.39 eV, and a Debye temperature = 594 K).  

3.4 Experimental Validation of the 5d1 Model 

The experimental validation of the selected potential inorganic phosphor involved solid-state synthesis. 
Ca2SrSc6O12 crystallizes in the orthorhombic space group Pnma (no. 62) with a single crystallographically 
distinct statistically-mixed [(Ca/Sr)O8] substitution site (Figure 6a).67 Synchrotron powder X-ray 
diffraction was collected for Ca2SrSc6O12:Ce3+ and analyzed using the Rietveld refinement method starting 
from the published Ca2SrSc6O12 structure file (PCD #1934108). Ce3+ was omitted from the refinement due 
to its low concentration. The diffractogram verified the sample’s purity (Figure 6b), while the refined lattice 
parameters provided in Tables S2 and S3 agree with the original structure. The 5d1 energy prediction was 
performed using the experimentally refined structure, accounting for site disorder with pymatgen. This 
yielded a prediction of 422 nm (2.94 eV) for Ce3+ substitution on both the [CaO8] and [SrO8] sites, closely 
matching the original prediction. Experimentally measuring the photoluminescence excitation spectrum 
showed the peak falling at a maximum (λmax) of 440 nm (2.82 eV), deviating by only 18 nm (0.12 eV) from 
the predicted value—well within the model’s MAE (Figure 6c).  

 

Figure 6. (a) Crystal structure of Ca2SrSc6O12 (PCD #1934108) and Ca2+/Sr2+ site for the prediction. (b) Rietveld 
refinement of Ca2SrSc6O12:Ce3+ starting from PCD #1934108. (c) Normalized excitation and emission spectrum of 
Ca2SrSc6O12:Ce3+ with predicted 5d1 energy in wavelength scale of [CaO8] and [SrO8] site. The predicted 5d1 of [CaO8] 
is 422 nm, while [SrO8] is 422 nm. The experimental excitation peak position is 440 nm, and the emission peak is 503 
nm.  

The remaining optical properties were analyzed with a blue LED to assess the phosphor’s practical 

https://github.com/BrgochGroup
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performance. Collecting the room temperature photoluminescence emission (λex = 440 nm) spectrum 
revealed the phosphor exhibits a light green color (λem,max=503 nm) with an extremely broad (112 nm; 4,000 
cm−1) fwhm, spanning from 450 nm to 650 nm (Figure 7a). The emission spectrum at 100 K was 
deconvoluted into two distinct peaks (λmax,1= 497 nm; 20,134 cm−1, λmax,2= 553 nm; 18,074 cm−1) separated 
by ≈2,000 cm−1 as expected for the spin-orbit-coupled 5d1 → 2F5/2, 2F7/2 transitions of Ce3+.68,69 Measuring 
the temperature-dependent photoluminescence, plotted in Figure 7b, shows the two peaks merge due to 
thermal broadening as the temperature increases. The emission peak also shifted slightly from 503 nm at 
100 K to 517 nm at 650 K. These changes lead to a shift in the CIE coordinates falling outside the 3-step 
MacAdam ellipse across the entire temperature range, indicating the change in emission color as a function 
of temperature is noticeable to the standard human observer (Figure 7c). Analyzing the change in emission 
intensity over the specified temperature range, as plotted in Figure 7d, reveals that the optical response of 
the phosphor was only slightly affected from 100 K to room temperature, with a decrease of approximately 
5% before the thermal performance of the phosphor is impacted. The T50, defined here as the temperature 
at which the luminescence intensity reaches 50% of its maximum value, was found to be 450 K, surpassing 
the current expectations set by the U.S. Department of Energy (423 K).3  

The measured PLQY is slightly low at 33(2) %. However, it is essential to emphasize that this synthesis 
is unoptimized, as it lacks post-processing, fluxes/mineralizers, or other conventional methods commonly 
employed to enhance phosphor performance. The lower PLQY could also be attributed to charge-
compensating defects resulting from Ce3+ substituting for Ca2+/Sr2+. These defects are known to quench the 
PLQY, yet aliovalent substitutions are common in literature. To improve the performance of this phosphor, 
strategies such as co-substitution with charge-compensating ions or additional chemical modifications to 
minimize the detrimental defects and enhance the PLQY, ultimately optimizing the material for practical 
use. Finally, photoluminescence lifetime measurement was collected for completeness and yielded a decay 
time of 37.8(6) ns (Figure S4). Overall, the performance of Ca2SrSc6O12:Ce3+ aligns with the expected 
performance based on the calculated Debye temperature and (PBE-level) band gap,12 and there is excellent 
agreement with the new 5d1 model created here, ensuring blue-LED compatibility. 
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Figure 7. (a) Deconvoluted emission spectrum of Ca2SrSc6O12:Ce3+ at 100 K under 450 nm excitation. (b) 
Temperature-dependent emission spectra measured from 100 K to 620 K. (c) The emission spectra from 100 K to 600 
K with 100 K interval, plotted in CIE 1931 space, showing chromatic stability of Ca2SrSc6O12:Ce3+. (d) Relative 
integrated emission intensity as a function of temperature. 

4. Conclusion 

This study introduced a supervised machine-learning approach for predicting the 5d1 excitation energy 
levels in Ce3+ phosphors. The XGBoost model was trained on a diverse dataset comprising 357 
experimentally measured 5d1 energy levels from 337 different host structures, achieving a mean prediction 
accuracy of ±0.15 eV. This high level of performance was accomplished through feature engineering, leave-
one-group-out cross-validation techniques, and recursive feature elimination, resulting in a refined set of 
44 scientifically relevant features. Feature importance analysis provided further insights into the physical 
mechanisms determining the 5d1 energy levels, including average Pauling electronegativity, relative 
permittivity, and centroid shifts, among others. Beyond its capabilities for linear regression prediction, this 
5d1 model also demonstrated effectiveness as a tool for analyzing the excitation spectra of multi-cation site 
phosphors and for interpreting outlier detection. Finally, this new machine learning model allowed the rapid 
prediction of more than 50,000 possible phosphor 5d1 energies, leading to the successful identification, 
synthesis, and characterization of a novel, blue-excited phosphor, green-emitting composition: 
Ca2SrSc6O12:Ce3+. This discovery was the ultimate validation of the model’s effectiveness in practical 
phosphor discovery.  
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Figure S1. Leave-One-Out cross-validation of (a) the reconstructed relative permittivity prediction model and (b) 
the reconstructed centroid shift prediction model. 

Table S1. Initial feature set for the 5d1 prediction model. The final 44 features via RFE for the final model marked 
with bold font. 

Index Feature Name Index Feature Name 

0 Predicted centroid shift 24 b 

1 Predicted relative permittivity 25 c 

2 Polyhedron volume 26 alpha 

3 Coordination number 27 beta 
4 Point group 28 gamma 

5 Cation ionic radius 29 Avg. atomic weight 
6 Dopant ionic radius 30 Avg. Mendeleev number 

7 Ionic radii difference 31 Avg. crystal radius 

8 Min. metal ligand bond length 32 Avg. Pauling electronegativity 

9 Max. metal ligand bond length 33 Avg. number of valence electrons 

10 Mean. Metal ligand bond length 34 Avg. Gilmor number of valence electron 

11 Distortion index 35 Avg. valence s 

12 Cation site Madelung potential 36 Avg. valence p 

13 CSM 37 Avg. valence d 

14 Chemenv_CN 38 Avg. 1st ionization potential (kJ/mol) 
15 Space group number 39 Avg. polarizability (Å3) 
16 Crystal system 40 Avg. electron affinity (kJ/mol) 
17 Polar axis 41 Avg. density of element (g/ml) 
18 Inversion center 42 Avg. specific heat (J/g‧K) 
19 Unit cell volume 43 Avg. heat of fusion (kJ/mol) 
20 Unit cell volume per Z 44 Avg. heat of vaporization (kJ/mol) 
21 Unit cell volume per atom 45 Avg. thermal conductivity (W/m‧K) 
22 Density 46 Avg. heat atomization 

23 a 47 Avg. cohesive energy 
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Index Feature Name Index Feature Name 

48 Diff. atomic weight 86 Min. atomic weight 
49 Diff. Mendeleev number 87 Min. Mendeleev number 
50 Diff. crystal radius 88 Min. crystal radius 

51 Diff. Pauling electronegativity 89 Min. Pauling electronegativity 

52 Diff. number of valence electrons 90 Min. number of valence electrons 

53 Diff. Gilmor number of valence electron 91 Min. Gilmor number of valence electron 

54 Diff. valence s 92 Min. valence s 

55 Diff. valence p 93 Min. valence p 

56 Diff. valence d 94 Min. valence d 

57 Diff. 1st ionization potential (kJ/mol) 95 Min. 1st ionization potential (kJ/mol) 
58 Diff. polarizability (Å3) 96 Min. polarizability (Å3) 
59 Diff. electron affinity (kJ/mol) 97 Min. electron affinity (kJ/mol) 
60 Diff. density of element (g/ml) 98 Min. density of element (g/ml) 
61 Diff. specific heat (J/g‧K) 99 Min. specific heat (J/g‧K) 
62 Diff. heat of fusion (kJ/mol) 100 Min. heat of fusion (kJ/mol) 
63 Diff. heat of vaporization (kJ/mol) 101 Min. heat of vaporization (kJ/mol) 
64 Diff. thermal conductivity (W/m‧K) 102 Min. thermal conductivity (W/m‧K) 
65 Diff. heat atomization 103 Min. heat atomization 

66 Diff. cohesive energy 104 Min. cohesive energy 

67 Max. atomic weight 105 Std. atomic weight 
68 Max. Mendeleev number 106 Std. Mendeleev number 
69 Max. crystal radius 107 Std. crystal radius 

70 Max. Pauling electronegativity 108 Std. Pauling electronegativity 

71 Max. number of valence electrons 109 Std. number of valence electrons 

72 Max. Gilmor number of valence electron 110 Std. Gilmor number of valence electron 

73 Max. valence s 111 Std. valence s 

74 Max. valence p 112 Std. valence p 

75 Max. valence d 113 Std. valence d 

76 Max. 1st ionization potential (kJ/mol) 114 Std. 1st ionization potential (kJ/mol) 
77 Max. polarizability (Å3) 115 Std. polarizability (Å3) 
78 Max. electron affinity (kJ/mol) 116 Std. electron affinity (kJ/mol) 
79 Max. density of element (g/ml) 117 Std. density of element (g/ml) 
80 Max. specific heat (J/g‧K) 118 Std. specific heat (J/g‧K) 
81 Max. heat of fusion (kJ/mol) 119 Std. heat of fusion (kJ/mol) 
82 Max. heat of vaporization (kJ/mol) 120 Std. heat of vaporization (kJ/mol) 
83 Max. thermal conductivity (W/m‧K) 121 Std. thermal conductivity (W/m‧K) 
84 Max. heat atomization 122 Std. heat atomization 

85 Max. cohesive energy 123 Std. cohesive energy 
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Figure S2. Plot of experimental 5d1 energy versus predicted 5d1 by the initial 5d1 prediction model with 124 
features. 

 

Figure S3. Distribution of predicted excitation wavelengths of Ce3+ in the 54,885 cation sites screened from 
Materials Project, grouped by the host anion type. Red marked values are from the garnet structure type with 
gallium or germanium. The entire prediction set of excitation wavelength values is available on GitHub 
(https://github.com/BrgochGroup).  

Table S2. Rietveld refinement data and statistics for Ca2SrSc6O12
 

Refined formula Ca2SrSc6O12 

Radiation λ (Å) 1.546 

2θ range (°) 10-120 

Temperature (K) 295 

https://github.com/BrgochGroup
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Crystal system Orthorhombic 

Space group; Z Pnma; 4 

a 9.54741 

b 3.16048 

c 11.18849 

Volume (Å3) 337.606 

wR 15.089 

χ2 2.73 

 

Table S3. The refined atomic positions for Ca2SrSc6O12
 

Atom Wyck. Pos. x y z Uiso Occ. 
Ca1 4c 0.2448(2) 1/4 0.6535(1) 0.0025(4) 0.644(5) 
Sr1 4c 0.2448(2) 1/4 0.6535(1) 0.0025(4) 0.356(5) 
Sc1 4c 0.0797(1) 1/4 0.3939(1) 0.0005(5) 1.000 

Sc2 4c 0.5705(2) 1/4 0.6138(2) 0.0013(5) 1.000 

O1 4c 0.0786(6) 1/4 0.0832(5) 0.011(2) 1.000 

O2 4c 0.2899(6) 1/4 0.3276(5) 0.009(2) 1.000 

O3 4c 0.3738(5) 1/4 0.0219(5) 0.003(2) 1.000 

O4 4c 0.4746(7) 1/4 0.7858(5) 0.015(2) 1.000 

 

 

Figure S4. The lifetime measurement of Ca2SrSc6O12:Ce3+ at room temperature under 455 nm excitation, fitted with 
bi-exponential decay. 

 


