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Fig. 1: Utilize the scene reconstruction capability and anisotropic diffusion (row 1) for real-time relighting of a room in various lighting
conditions in mixed reality (row 2).

AbstractÐMixed Reality scene relighting, where virtual changes to lighting conditions realistically interact with physical objects,
producing authentic illumination and shadows, can be used in a variety of applications. One such application in real estate could be
visualizing a room at different times of day and placing virtual light fixtures. Existing deep learning-based relighting techniques typically
exceed the real-time performance capabilities of current MR devices. On the other hand, scene understanding methods, such as
on-device scene reconstruction, often yield inaccurate results due to scanning limitations, in turn affecting relighting quality. Finally,
simpler 2D image filter-based approaches cannot represent complex geometry and shadows. We introduce a novel method to integrate
image segmentation, with lighting propagation via anisotropic diffusion on top of basic scene understanding, and the computational
simplicity of filter-based techniques. Our approach corrects on-device scanning inaccuracies, delivering visually appealing and accurate
relighting effects in real-time on edge devices, achieving speeds as high as 100 fps. We show a direct comparison between our method
and the industry standard, and present a practical demonstration of our method in the aforementioned real estate example.

Index TermsÐRelighting, Mixed Reality, Computer Vision

1 INTRODUCTION

Recent advancements in Mixed Reality (MR) technologies have signif-
icantly enhanced the capabilities of headsets, enabling them not only
to visualize but also to comprehend real-world environments through
passthrough cameras. This capability allows users to interact with their
environments through a controllable virtual rendering layer, opening
opportunities for various applications, notably scene relighting. By
intelligently manipulating camera data, we can effectively alter the
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perceived lighting conditions of the environment, offering realistic sim-
ulations of diverse lighting scenarios without physically altering actual
light sources.

Scene relighting has numerous practical applications, including im-
mersive integration of virtual objects with real-world scenes, creating
visually compelling storytelling effects, or simulating environments
under different lighting conditions for planning and visualization.

Simple 2D filter-based relighting methods, such as adjustments to
image temperature, contrast, or exposure, can be easily implemented
with various image editing software packages. More advanced tech-
niques involve masking-based image processing, which allows local-
ized illumination changes, like simulating a spotlight effect. These
learning-free approaches are highly efficient, stable, and predictable
but suffer from limitations due to the absence of 3D geometric con-
text, particularly when accurately representing complex shadows and
occlusion interactions.

In contrast, sophisticated 3D-based relighting methods utilize scene
geometry derived from real-time reconstruction to achieve more accu-
rate lighting simulations. These techniques leverage traditional ren-

ar
X

iv
:2

5
0
8
.1

4
9
3
0
v
1
  
[c

s.
G

R
] 

 1
9
 A

u
g
 2

0
2
5

https://arxiv.org/abs/2508.14930v1


Fig. 2: An example of a synthetic scene being relit by a spotlight image
filter rendered on an untextured version of the mesh data.

Fig. 3: An example of the mesh quality directly from the LiDAR camera on
the iPhone 16 Pro. The errors in such suboptimal mesh can significantly
reduce the visual quality of the final relit image, especially around the
edges.

dering methods, such as rasterization or ray tracing, enabling more
realistic representation of shadows and illumination interactions. How-
ever, current on-device scene reconstruction, typically performed using
built-in lidar or depth sensors on MR headsets, often results in sim-
plified meshes due to computational constraints and limited fidelity,
adversely affecting the quality of relighting.

More recent developments in deep learning have paved the way for
highly detailed and realistic relighting solutions. Deep neural networks
can infer intrinsic scene properties such as surface normals, roughness,
albedo, and reflectance, greatly improving the accuracy and visual re-
alism of relighting effects. However, these deep learning methods are
typically computationally intensive, limiting their real-time applicabil-
ity on edge devices such as MR headsets.

In this paper, we propose a novel hybrid method that integrates the
computational efficiency of filter-based approaches with the deeper
semantic understanding provided by deep learning-guided anisotropic
diffusion. Our approach specifically addresses the inaccuracies present
in simplified meshes generated by real-time scene reconstruction. By
leveraging RGB images captured from passthrough cameras, we em-
ploy a deep learning-based feature extractor to accurately identify
high-frequency details and object boundaries. Subsequently, we apply
anisotropic diffusion iteratively, guided by these learned features, to
smoothly interpolate shading within object boundaries while maintain-
ing sharp, precise edges.

Recognizing the computational demands of conventional anisotropic
diffusion, which typically require numerous iterations to achieve equi-
librium, we introduce a cascaded diffusion strategy. This method
capitalizes on the rapid propagation of gradients at lower image res-
olutions, progressively refining edge details through fewer iterations,
significantly enhancing runtime efficiency.

In short, the problem we are solving is: How can we relight a
dynamically updating scene that is geometrically correct, and runs in
real-time on device in Mixed Reality? And our primary contributions
include:

• A hybrid relighting approach that effectively combines deep learn-
ing feature extraction with filter-based anisotropic diffusion.

• A modified anisotropic diffusion process optimized for fewer
iterations, demonstrating that existing deep diffusion model ar-

chitectures can be effectively adapted to run in real time on edge
devices.

• A practical demonstration and evaluation of our method on com-
mercially available MR devices. We present how relighting can
be practically applied in a real estate tour scenario.

2 RELATED WORK

Scene Reconstruction based Relighting Approaches
Scene relighting techniques have historically relied on high-quality
reconstructions as a basis for realistic lighting simulations. Early re-
search demonstrated the potential of mesh-based methods to produce
convincing relit images given sufficiently detailed geometry [9]. How-
ever, due to computational constraints, MR headsets typically employ
mesh decimation strategies, resulting in reduced fidelity and dimin-
ished relighting quality. To address this limitation, several studies
have proposed methods to incrementally refine meshes dynamically
and efficiently. Hybrid voxel-octree fusion techniques [14], and the
Large Reconstruction Model (LRM) [22], demonstrate that high-quality
meshes can be rapidly generated even from sparse input views. Addi-
tionally, recent advancements in real-time dense scene reconstruction
can achieve high-fidelity meshes at approximately 20 frames per second
(fps) on powerful GPUs, although these methods remain computation-
ally prohibitive for edge-device deployment [15].

Neural rendering methods, including Gaussian splatting and Neural
Radiance Fields (NeRF), have also been explored for their impres-
sive capabilities in large-scale scene relighting [16] [3] [26]. Despite
achieving visually compelling results, these methods require extensive
pre-training, ranging from several minutes to half an hour, thus limiting
their practical usability in interactive MR scenarios.

Other recent approaches seek to infer 3D scene information without
explicitly generating 3D representations. Advances in depth estima-
tion have enabled consistent depth image generation from extended
video sequences, achieving high-performance processing speeds of
approximately 9 ms per frame (over 100 fps) on high-end discrete
GPUs [4]. Additionally, depth estimation methods tailored for edge de-
vices have been developed, reaching speeds up to 300 fps on embedded
Nvidia hardware, albeit with compromised image quality and temporal
inconsistency [6].

An approximation of surface normals can be efficiently derived
using camera intrinsics and pixel-wise cross-products; however, accu-
rately capturing complex occlusion information necessary for realistic
shadow rendering introduces additional computational overhead, of-
tentimes requiring another learning-based model running on top of it
as explored in the work by Yang et al. [23]. The quality of relight-
ing thus significantly depends not only on global depth consistency
across frames but also on local depth accuracy. To address this, joint
prediction frameworks for depth and surface normals have emerged,
demonstrating superior quality but sacrificing real-time performance
on edge computing devices [8].

Image-based Direct Relighting Methods
Image-based relighting has been extensively investigated within

computer vision literature. Traditional techniques typically involve de-
composing images into intrinsic components, such as albedo, shading,
and lighting, often requiring multiple neural network layers for accurate
extraction [24] [11]. More recent research leverages generative models
capable of directly synthesizing relit images conditioned upon new
lighting parameters, achieving high-quality results with simpler archi-
tectures. These generative models demonstrate remarkable flexibility
and visual realism [18] [2] [10]. Although explicit runtime evaluations
are not always provided, related studies on diffusion-based generative
methods indicate that one-step diffusion models can produce relit im-
ages as rapidly as 9 ms per frame on high-end GPUs [25]. However,
all these methods are tailored for static images, without considering
temporal information which makes maintaining consistent illumina-
tion across video sequences in real-time a challenge requiring further
investigation.

Guided Depth and Point Cloud Enhancement
Working with low-fidelity data from depth sensors and lidar scanners

is a significant challenge in many fields, including MR, autonomous



Fig. 4: Our relighting pipeline takes in one RGB camera image and one
RGB relight image. High-level edge information extracted from the RGB
camera image is used as the guidance for anisotropic diffusion running
on the relight image. The refined output is composited with the original
camera RGB to produce the final relit image.

driving, and robotics. Thus having high-quality depth and point cloud
data are crucial for accurate scene understanding and effective relight-
ing. Recent approaches have leveraged concurrent RGB imagery to
enhance [17] [5] [28] [20] and complete sparse or imperfect depth
information [19] [21], exploiting complementary information between
modalities. Similar approaches can also be applied on point-cloud
completion [13] [12]. Studies on guided depth super-resolution and
depth completion indicate that real-time performance (up to 50 fps) is
achievable, highlighting the potential of these methods for practical
MR deployment [7].

Our proposed method draws inspiration from this body of work.
Specifically, we combine RGB guidance and suboptimal mesh data to
significantly improve scene relighting quality. Our approach employs
anisotropic diffusion guided by learned RGB features, effectively trans-
lating established depth super-resolution methods into the context of
real-time MR relighting.

3 METHODS

Our proposed relighting method integrates a mesh-aware, filter-based
approach with guided anisotropic diffusion, delivering high-quality,
real-time relighting for mixed reality (MR) scenarios on edge devices.
This method combines the speed and efficiency of GPU-based filtering
with the semantic precision of deep learning-based anisotropic diffu-
sion, effectively overcoming the visual quality limitations introduced by
simplified mesh reconstruction typically found in MR hardware. The
following sections detail each component of our pipeline, including
mesh-aware filtering, guided anisotropic diffusion, cascaded diffusion
strategies for enhanced computational efficiency, shadow rendering
adjustments, and transferable training methodologies derived from
existing depth super-resolution techniques.

3.1 Mesh-aware Filter-based Relighting

To leverage the computational speed of simple 2D-filters we utilize a
mesh-aware filtering pipeline that integrates geometric awareness into
traditional image processing. Initially, we reconstruct the scene geome-
try using real-time mesh reconstruction techniques typically available
on MR devices. Within a 3D rendering engine, we introduce virtual
lights and render the mesh using standard shading algorithms. The
resulting shaded mesh acts as an image-space filter that is precisely
aligned with the RGB camera frames through consistent camera intrin-
sic parameters. The final relit image is obtained by compositing this
rendered mesh with the original RGB frame via image multiplication.

Thus, it can be defined as the following: we are given a rendered
relight image R ∈ R

H×W×3 serving as the filter acquired directly from
the original mesh. And we are given an RGB camera frame C ∈
R

H×W×3 as the passthrough. The output which is our relit image

which can be simply defined as

S = R⊙C (1)

where ⊙ denotes element-wise (per-pixel) multiplication. While this
approach provides efficiency and real-time performance, it depends
significantly on the accuracy and fidelity of the reconstructed mesh.
Due to the computational limitations inherent in MR hardware, meshes
are often simplified, resulting in degraded visual quality and inaccurate
shading outcomes.

3.2 Guided Anisotropic Diffusion for Relighting Correction

Our key insight is that the mesh inaccuracies that affect shading quality
most severely occur at 3D depth discontinuities which correspond to
edge boundaries in 2D images. To solve for this, we employ anisotropic
diffusion, an edge-aware filtering technique known for effectively
smoothing interior regions of objects while preserving edges. Specifi-
cally, we guide anisotropic diffusion using edge information extracted
by a deep learning-based feature extractor trained to identify critical
scene details and object boundaries. By using learned features rather
than simple RGB edges, we enhance diffusion precision, ensuring the
gradient propagation remains confined within object boundaries.

Drawing inspiration from guided depth super-resolution research
[17], we adapt the anisotropic diffusion approach from the depth do-
main to the relighting scenario. The guided anisotropic diffusion can be
mathematically described using the formulation introduced by Metzger
et al. [17]. The prediction of a pixel’s value at iteration t at location p
is expressed as follows:

ŷ
p
t = y

p
t−1 +λ · ∑

n∈N
p

4

(

yn
t−1 − y

p
t−1

)

· c(gp
,gn) (2)

Here, y
p
t represents the pixel intensity at position p in the image Yt .

N
p

4 refers to the set of four directly adjacent pixels (4-neighborhood)
around pixel p, effectively forming a planar graph across the image. The
hyperparameter λ controls the diffusion strength and ensures stability
during iterations; when utilizing 4-neighborhood connectivity, it must

satisfy λ <
1
4 . The diffusion coefficient c(gp,gn) is computed based

on the similarity between guide features at pixels p and n, as initially
introduced by [17]:

c(gp
,gn) =

κ2

κ2 +∥gp −gn∥2
2

(3)

The hyperparameter κ controls sensitivity to feature gradients within
the guidance image G, with higher values allowing smoother diffusion
across larger differences. The symmetry of this coefficient function
ensures c(gp,gn) = c(gn,gp).

While conventional anisotropic diffusion methods directly use the
current image state Yt−1 as guidance, the method we adopt explicitly
incorporates separate guidance data G. This distinction is particularly
valuable in relighting tasks. Unlike depth maps, relit images often
contain inaccuracies due to simplifications in the initial mesh repre-
sentation. Thus, our method addresses these inherent inaccuracies
explicitly, optimizing the diffusion process to yield visually consistent
results in fewer iterations.

3.3 Cascaded Anisotropic Diffusion for Enhanced Effi-
ciency

Recognizing the computational burden of conventional anisotropic dif-
fusion, we introduce a cascaded diffusion strategy operating at multiple



Fig. 5: The effect of the anisotropic diffusion coefficients provided by the
RGB camera guidance image. The input for anisotropic diffusion is pure
Gaussian noise. The output is scaled up for better image clarity.

Fig. 6: Edge-aware pixel-color diffusion process demonstrates strong
capabilities in fixing the errors caused by inaccuracies in the scanning
process. We show how this approach can produce smooth shading in
each object while maintaining high edge consistency.

resolutions.

(1) Initialize coarse level:

Y
(1)
0 =↓L−1 (Y0), G(1) =↓L−1 (G)

(2) Coarse-to-fine diffusion:

For l = 1 to L :

C(l) = MinPool
(

c(G(l))
)

Y
(l)
t = D

(

Y
(l)
t−1,C

(l)
)

(3) Upsample and refine:

If l < L : Y
(l+1)
t =↑

(

Y
(l)
t

)

(4) Final relit image:

S = Y
(L)
t (4)

In this formulation, let L be the number of resolution levels, where
l = 1 denotes the coarsest scale and l = L corresponds to the original

resolution. The image Y
(l)
t and guide G(l) are derived by downsampling

the original inputs Y0 and G respectively. At each level, we compute

diffusion coefficients C(l) using a min pooling strategy, ensuring edge
preservation across pooling grids. The anisotropic diffusion operator
D is then applied using these coefficients. The diffused image is
upsampled to the next finer level, where additional refinement iterations
are performed. This coarse-to-fine cascade continues until the finest

resolution is reached, yielding the final relit image S. This approach
significantly reduces computational overhead while preserving critical
high-frequency details needed for sharp visual relighting. By initially
performing diffusion at reduced image resolutions, we significantly
expedite gradient propagation across large pixel areas. We employ
min pooling for downsampling diffusion coefficients, ensuring edge
integrity by treating any edge pixel as an edge across the entire pooling
grid, thereby preventing unintended color blending.

Subsequently, we progressively upscale the image back to its origi-
nal resolution, applying additional, targeted diffusion iterations at each
resolution level to restore detailed edge information lost during down-
sampling. This cascading approach significantly reduces computational
requirements, enabling real-time performance while preserving critical
high-frequency details necessary for visually sharp relighting.

Fig. 7: Our cascaded anisotropic diffusion pipeline. We run the diffusion
process at lower resolution and we chain the results together by up-
sampling the previous outputs and further refining image quality.

3.4 Adjusted Anisotropic Diffusion for Shadow Rendering

An important aspect of realistic relighting is accurately rendering
shadows cast by real objects. Unlike direct shading, shadows’ shapes
depend on the geometry of casting objects rather than the surfaces
onto which they fall. To preserve the accuracy and softness of
shadow edges, we implement a separate diffusion pass specifically
optimized for shadow rendering, as shown in Fig. 8. By reducing the
number of diffusion iterations and maintaining operation at higher
resolutions, we effectively blur shadows to produce soft, realistic
effects without compromising shape accuracy. The edge-aware nature
of the anisotropic diffusion process ensures that shadow colors remain
confined, preventing leakage onto adjacent objects.

3.5 Transferable Training from Depth Super-resolution
Models

The core learnable component of our method is the deep learning-based
feature extractor responsible for guiding anisotropic diffusion. Lever-
aging existing depth super-resolution training frameworks, we train a
compact, state-of-the-art model suitable for edge-device deployment.
Our training pipeline modifies the input channels from single-channel
depth maps to three-channel RGB images, facilitating the direct appli-
cation of existing depth datasets by artificially randomizing color tints.
This approach significantly simplifies the training process, benefiting
from widely available depth datasets while addressing the scarcity of
annotated relighting datasets.

4 EXPERIMENTS

4.1 Training Details

The trainable component within our relighting pipeline is the deep
feature extractor used on RGB camera images. An effective feature
extractor ideally produces values close to zero at edges and close to



Fig. 8: Shadows can be computed in a separate pass using traditional
shadow mapping techniques together with only a few of anisotropic
diffusion iterations to ensure their overall shapes are not destructed by
the diffusion process.

Fig. 9: A figure from [17]. This figure directly visualizes the values of the
coefficients. We observe that they have the exact properties we want for
guided anisotropic diffusion. Since this is the only trainable section in the
whole pipeline, this shows that any well trained deep feature extractor
can be used for any guided anisotropic diffusion tasks.

one within object regions, facilitating smooth gradient propagation in-
ternally while preserving sharp boundaries. We observe this character-
istic to be universally beneficial regardless of the specific downstream
tasks, as the optimization consistently targets the diffusion coefficients.
Consequently, our training procedure is significantly inspired by the
approach detailed in Metzger et al. [17].

We use widely accessible datasets from the domain of depth super-
resolution for training, specifically the DIML dataset. Our experiments
involve training two state-of-the-art mobile-oriented vision models:
mobilenetv4_conv_small and mobilenetv4_conv_medium. Both mod-
els employ a U-Net structure from the segmentation_models_pytorch
package to generate precise feature maps.

A notable departure from the original method presented by Met-
zger et al. is that our feature extraction exclusively relies on RGB
images, omitting the concatenation of lower-resolution depth inputs.
This change is essential because the relighting images available to us
inherently contain inaccuracies and inconsistencies, thus precluding
their use as reliable ground truth even at reduced resolutions. Removing
these erroneous inputs ensures that our models do not learn to depend
on potentially faulty data. Another significant innovation introduced
by Metzger et al., known as "adjustment step," is crucial for ensuring
convergence during training on depth datasets. We also integrate this
technique into our training procedure to improve stability and accuracy.

Lastly, we clearly outline our training parameters, highlighting key
adjustments from the original configuration. We adopt the same dy-

namically stepped learning rate as proposed by Metzger et al. but use
higher-resolution 512x512 images to ensure enhanced edge fidelity.
The depth upsampling scale factor is set at 32. Due to memory con-
straints during backpropagation and data tracking, we configure the
training step as 512 and predictions as 20,000. Both vision models are
trained on NVIDIA A100 GPUs, with a batch size of 8 over 12,000
iterations.

4.2 Numerical Metrics

We conduct comprehensive evaluations of our method using the ARK-
itScenes dataset [1], which is collected by Apple using the same LiDAR
camera embedded within their mixed reality devices. This dataset com-
prises RGB camera frames, ARKit-generated meshes identical to those
accessible on-device, and high-density point clouds acquired by a Faro
laser scanner, providing an ideal benchmark for assessing our relighting
approach.

Given that the detailed point cloud data surpasses the real-time pro-
cessing capabilities of edge devices, we perform offline rendering of
both the ARKit-generated meshes and the high-density point clouds
using Blender. This ensures alignment consistency between the ren-
dered meshes and the RGB camera frames. Subsequently, we employ a
mesh-based filtering strategy in Blender by adding virtual light sources
directly onto both meshes and point clouds. The rendered outputs from
this step are composited with the corresponding RGB camera frames
to generate final relit images, ensuring accurate alignment by utilizing
the provided pose and trajectory information.

To assess our method, we introduce three benchmarks, each designed
to evaluate distinct aspects of our pipeline:

Benchmark 1: Mesh Error Correction

We first evaluate our method’s effectiveness at correcting inaccura-
cies inherent in the ARKit mesh. In this scenario, we simulate an ideal
lighting condition by placing a bright point light centrally within the
room. A flawless mesh rendering would yield a grey to white filter,
implying low errors in the composited result. Conversely, an imperfect
mesh introduces black pixels in the filter, resulting in artifacts in the
final composited image. We quantitatively measure performance us-
ing both LPIPS [27] and Peak Signal to Noise Ratio (PSNR) metrics,
comparing:

• Original RGB frames and directly composited ARKit mesh-based
rendering

• Original RGB frames and our refined anisotropic diffusion-
enhanced rendering

Our results demonstrate that our refined method achieves lower LPIPS
and higher PSNR scores, verifying its capability to effectively mitigate
artifacts caused by mesh inaccuracies.

Benchmark 2: Multi-Lighting Consistency

Acknowledging that trivial solutions (such as a uniformly white
filter) could artificially perform well in Benchmark 1, we introduce a
second scenario that mimics realistic relighting conditions more closely.
Here, two dimmed, differently-colored point lights are placed within
the scene to generate a different lighting environment. Again, we assess
the rendered images against original RGB frames using LPIPS and
PSNR metrics. Our refined method consistently exhibits lower LPIPS
scores compared to direct mesh rendering, emphasizing its ability to
retain the visual features of the original scenes under varied lighting
configurations.

Benchmark 3: Relighting Fidelity

Lastly, we evaluate our method’s capability to generate visually
accurate relighting effects relative to a high-fidelity baseline rendered
from dense point cloud data. By comparing:

• Our refined method vs. the high-fidelity point cloud rendering

• Direct mesh rendering vs. the high-fidelity point cloud rendering

Although anisotropic diffusion can introduce slight pixel color dif-
ferences due to inherent smoothing, as reflected in the PSNR scores,
our approach demonstrates strong performance in preserving structural
consistency and overall visual realism, as evidenced by lower LPIPS
scores. This outcome aligns with our intuition: since the anisotropic



Fig. 10: Cascaded diffusion can quickly propagate gradients for high
visual quality at a fraction of the time to run.

diffusion result serves primarily as a filter that preserves edges while
smoothing other areas, compositing it with the original, sharp RGB
image mitigates potential noise introduced when smoothing was per-
formed. Therefore, the clarity and sharpness of the original RGB image
ensure that the final composited output maintains high visual fidelity.

For the metrics section, all data was gathered using the mo-
bilenetv4_conv_medium model, with cascaded anisotropic diffusion
running with 10 steps at 32×32 resolution, 15 steps at 64×64, 25 steps
at 128×128, 30 steps at 256×256, and then up-sampled to 512×512 res-
olutions. Quantitative results from these benchmarks are summarized
in Tab. 1, accompanied by representative visual comparisons illustrated
in Fig. 14, Fig. 15, Fig. 16. These evaluations collectively underscore
our approach’s robustness, accuracy, and practical applicability for
real-time MR relighting tasks.

Table 1: Evaluation metrics for relighting methods on mesh ID 47333462
with 596 images in the ARKitScenes dataset. Lower LPIPS and higher
PSNR values indicate better performance. Bold indicates the better
(smaller) value for each metric in each benchmark.

Benchmark ARKitMesh Ours

Mesh Error Correction
-LPIPS 0.1322 0.1078 18% ↓
-PSNR 12.7437 12.8100 0.5% ↑

Multi-Lighting Consistency
-LPIPS 0.4310 0.4120 4% ↓
-PSNR 1.7916 1.7672 1.4% ↓

Relighting Fidelity
-LPIPS 0.1391 0.1200 14% ↓
-PSNR 15.7850 15.7437 0.3% ↓

4.3 Ablations

In this section, we build upon the analyses presented by Metzger et
al [17]. in their training details by specifically investigating key compo-
nents unique to our inference-time techniques.

Effectiveness of the Cascaded Diffusion Approach

The cascaded diffusion strategy is engineered primarily to reduce
the number of diffusion iterations, thereby achieving real-time perfor-
mance suitable for deployment on edge devices. Here, we rigorously
assess its effectiveness and quantify the speed-up it offers. We employ
the medium-sized MobileNet model, applying a cascaded diffusion
sequence comprising 5 steps at 32×32 resolution, 10 steps at 64×64,
15 steps at 128×128, 20 steps at 256×256, and then up-sampled to
512×512 resolutions. This configuration totals 50 diffusion steps dis-
tributed across multiple scales. We compare this cascaded strategy
against two baseline scenarios: 50 and 1000 diffusion steps, all exe-
cuted solely at the resolution of 256×256 and up-sampled to 512x512.
We also measure the runtime performance for each scenarios. The
result is shown in Fig. 10.

Fig. 11: A naive diffusion approach can fail when the shadow is cast onto
simple flat surfaces such as walls or floors. A separated pass for shadow
rendering can effectively retain the overall shape.

Separate Rendering Pass for Shadows

We further examine the impact of conducting the diffusion process
directly on relighting images that include pre-applied shadows, com-
pared to executing the diffusion on shadow-free relighting images and
subsequently applying shadows in a separate rendering pass. In Fig. 11,
we illustrate how directly diffusing images with embedded shadows
significantly deteriorates shadow fidelity, primarily due to lack of strict
geometric confinement. Conversely, applying shadows separately and
refining through targeted shadow map iterations effectively preserves
and enhances shadow quality, mitigating the degradation introduced by
direct diffusion.

4.4 Use Case Demonstration

To demonstrate our approach in a practical mixed reality context, we cre-
ated a Unity-based demo targeted primarily at handheld devices, such
as iPads, suitable for real-estate tour scenarios. Our demo leverages
ARKit’s scene reconstruction capabilities to swiftly scan the environ-
ment, allowing users to define the positions and orientations of windows
through intuitive rectangular area markers. Subsequently, users can
interactively visualize different lighting scenarios across various times
of the day using a slider interface. This capability remains effective re-
gardless of the actual ambient lighting conditions at runtime, provided
the environment is reasonably illuminated. Additionally, the demo
includes scenarios such as cloudy day lighting, offering flat, uniform
illumination, and nighttime illumination featuring moonlight effects.

An important extension of our demo addresses custom virtual light-
ing configurations, highly relevant in practical scenarios such as virtual
product demonstrations or personalized interior design planning. Users
can intuitively place various virtual light sources, including lamps, can-
dles, or decorative lighting, directly within the real-world environment.
The system then dynamically calculates and visualizes realistic light-
ing interactions and shadows, enabling users to evaluate aesthetic and
practical implications without physically altering the actual lighting
setups.

Moreover, our demo supports fully dynamic mesh updating, which
significantly enhances user interactivity and realism. Users can freely
rearrange furniture or other elements within the room and immedi-
ately observe the updated lighting effects. This dynamic capability
allows real-time assessment of various spatial arrangements, signifi-
cantly improving user experience by ensuring seamless interaction and
immediate visual feedback.

5 CONCLUSIONS

In this work, we introduced Hybrelighter, a hybrid scene reconstruction
and mesh-based filtering approach leveraging guided deep anisotropic
diffusion for real-time relighting on edge devices. Our approach suc-
cessfully combines the computational efficiency of 2D image filters
with the depth and geometric accuracy achievable from scene recon-
struction capabilities commonly integrated into mixed reality hard-
ware. To address visual artifacts resulting from low-fidelity meshes
typically generated by these devices, we demonstrated how guided
deep anisotropic diffusion can effectively refine relighting outcomes.
Furthermore, we validated the transferability of anisotropic diffusion



Fig. 12: Our demo running in real-time at 50 fps on an iPhone 16 Pro,
scanning the environment. We map the positions of the real windows into
our demo in order to visualize the lighting more accurately. The top-right
image shows what the actual environment looks like. The bottom three
images show different times of the day. All images are captured at the
same time of the day.

Fig. 13: Examples of the room tour demo visualizing different times of
the day, and manually placing lights around the room.

models originally trained for guided depth super-resolution tasks to our
scenario with minimal adjustments.

We also proposed various improvements, including cascaded
anisotropic diffusion and a dedicated shadow processing pass, sig-
nificantly boosting performance and preserving critical visual details
such as shadows. Experimental evaluations against direct mesh-based
methods confirm that our approach produces visually superior results,
capturing essential high-frequency image features, like edges, more
effectively. Additionally, comparisons against high-fidelity dense point
cloud renderings underline our method’s accuracy and realism.

Looking ahead, several promising avenues could further enhance
our approach. A key limitation identified in our current pipeline is the
absence of a unified framework capable of consistently distinguishing
between shadows and geometry-related errors introduced by scanning
inaccuracies. Resolving this ambiguity remains a challenging, ill-
posed problem. Future research could explore additional learning-based
strategies, as well as complementary learning-free methods, to reliably
disentangle shadow regions from reconstruction artifacts, ultimately
leading to even more robust and visually consistent real-time relighting
solutions for mixed reality applications.

Fig. 14: Side by side comparison showing how anisotropic diffusion can
correct the artifacts that exist in the mesh directly acquired by ARKit.

Fig. 15: Side by side comparison showing our method and direct mesh-
based filter approach on relighting tasks.

Fig. 16: We compare the direct mesh-based filter approach, our method,
and a filter based on high-fidelity point clouds.
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