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Abstract

Accurate lighting estimation is challenging yet criti-

cal to many computer vision and computer graphics tasks

such as high-dynamic-range (HDR) relighting. Existing ap-

proaches model lighting in either frequency domain or spa-

tial domain which is insufficient to represent the complex

lighting conditions in scenes and tends to produce inaccu-

rate estimation. This paper presents NeedleLight, a new

lighting estimation model that represents illumination with

needlets and allows lighting estimation in both frequency

domain and spatial domain jointly. An optimal thresholding

function is designed to achieve sparse needlets which trims

redundant lighting parameters and demonstrates superior

localization properties for illumination representation. In

addition, a novel spherical transport loss is designed based

on optimal transport theory which guides to regress lighting

representation parameters with consideration of the spatial

information. Furthermore, we propose a new metric that

is concise yet effective by directly evaluating the estimated

illumination maps rather than rendered images. Extensive

experiments show that NeedleLight achieves superior light-

ing estimation consistently across multiple evaluation met-

rics as compared with state-of-the-art methods.

1. Introduction

Lighting estimation aims to recover illumination from a

single image with limited field of view. It has a wide range

of applications in various computer vision and computer

graphics tasks such as high-dynamic-range (HDR) relight-

ing in mixed reality, etc. However, lighting estimation is a

challenging and ill-posed problem as it needs to predict the

illumination coming from a full sphere of directions includ-

ing those unobserved from the current view in the scene.

Additionally, it often requires to infer HDR illuminations

from low-dynamic-range (LDR) observations so as to light

virtual objects realistically while inserting them into real

scene images as illustrated in Fig. 1.

Lighting estimation has been tackled by regressing the

parameters of various lighting representations in either fre-

quency domain [7, 15]) or spatial domain [14, 13, 34, 35].

However, lighting estimation in frequency domain nor-

mally represents illumination with Spherical Harmonics

(SH) which lack spatial localization capabilities. Thus it

tends to capture global lighting instead of the exact spa-

tial locations of the light sources which often leads to weak

shading and shadow effects as illustrated in Garon et al. [15]

of Fig. 1. Lighting estimation in spatial domain has been

addressed by direct generation of the illumination maps or

indirect reconstruction through spherical Gaussian function.

However, direct generation of illumination maps often leads

to worse generalization as lighting estimation is an under-

constrained problem by itself, and spherical Gaussian often

involves a complicated training process as described in [13].

Both types of approaches in spatial domain do not explic-

itly consider lighting frequency, and thus lead to inaccurate

relighting performance as illustrated in Gardner et al. [13]

of Fig. 1. The high frequency information also tends to be

blurred due to the use of naive L2 loss in the training. Ad-

ditionally, existing evaluation metrics in lighting estimation

usually assess the objects rendered with the predicted illu-

mination maps, which is time-consuming and sensitive to

the test setting.

In this work, we propose NeedleLight, a new model

that introduces needlet for accurate and robust lighting es-

timation from a single image. As a new generation of

spherical wavelets, needlet enjoys good localization prop-

erties in both frequency and spatial domain which makes it

ideal to be the basis for illumination representation. More-

over, to remove the redundant parameters in needlet coeffi-

cients which will disturb the regression of principle light

sources, we design an optimal thresholding function to

achieve sparse needlets which improve the lighting estima-

tion greatly.

Unlike spherical harmonic coefficients, needlet coeffi-

cients are spatially localized over a unit sphere. To utilize

the spatial information in regression, we propose a Spheri-

cal Transport Loss (STL) based on optimal transport theory.

STL is able to capture spatial information via a cost matrix
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(a) Garon et al. [15] (b) Gardner et al. [13] (c) Ours (d) Ground Truth

Figure 1. The proposed NeedleLight estimates a parametric lighting representation from a single scene image which is critical to many tasks

such as virtual object insertion. Unlike previous methods that predict lighting in either frequency domain [15] (losing spatial localization)

or spatial domain [13] (losing frequency information) only, we introduce a novel needlets basis which is capable of representing and

estimating lighting accurately in both frequency and spatial domains.

and estimate the needlet coefficients more accurately than a

naive L2 loss. Besides, STL employs auxiliary point strat-

egy to preserve high frequency information and greatly re-

duce the dimension of required parameters. Based on STL,

we design a new metric for the evaluation of lighting esti-

mation by measuring the discrepancy between illumination

maps. The new metric highly simplifies the evaluation pro-

cedure and provides concise yet effective evaluation with

regard to the lighting color, intensity and position.

The contribution of this work can be summarized in three

aspects. First, we introduce a novel needlet basis for il-

lumination representation which allows to regress the pa-

rameters in both frequency and spatial domains simultane-

ously. Second, we develop an optimal thresholding func-

tion to achieve sparse needlets which effectively removes

the redundant needlet coefficients and improves the lighting

estimation. Third, we design a novel Spherical Transport

Loss (STL) that effectively utilizes the spatial information

of needlet coefficients in regression. With STL, we also

design a new evaluation metric that is more concise and ef-

fective than existing evaluation metrics.

2. Related Works

Lighting Estimation: Lighting estimation is a classic

challenge in computer vision and computer graphics, and

it is critical for realistic relighting in virtual objects inser-

tion [11, 41, 18, 54, 43, 2, 16, 47, 29, 42, 5, 49] and image

synthesis [45, 40, 44, 50, 38, 46, 51, 39, 48]. Traditional

approaches require user intervention or assumptions about

the underlying illumination model, scene geometry, etc. For

example, Karsh et al. [17] recovers parametric 3D lighting

from a single image but requires user annotations for initial

lighting and geometry estimates. Zhang et al. [52] requires

a full multi-view 3D reconstruction of scenes. Lombardi

et al. [24] estimates illumination from an object of known

shape with a low-dimensional model.

The recent works estimate lighting by regressing repre-

sentation parameters or generating illumination maps [21,

37, 16, 53, 23, 6, 31]. For example, Cheng et al. [7] re-

gresses the SH parameters of global lighting with a render

loss. Maier et al. [25] recover spherical harmonics illu-

mination with additional depth information. Garon et al.

[15] estimate lighting by predicting SH coefficients from a

background image and local patch. Gardner et al. [13] esti-

mate the positions, intensities, and colours of light sources

and reconstructs illumination maps with a spherical Gaus-

sian function. Li et al. [20] represent illumination maps

with multiple spherical Gaussian functions and regresses

the corresponding Gaussian parameters for lighting estima-

tion. Gardner et al. [14] generate illumination maps di-

rectly with a two-steps training strategy. Legendre et al.

[19] regress HDR lighting from LDR images by comparing

the ground-truth sphere image to the rendered one with the

predicted illumination. Srinivasan et al. [35] estimate a 3D

volumetric RGB model of a scene and uses standard vol-

ume rendering to estimate incident illuminations. Zhan et

al. [?] propose to formulate the regression of illumination

as the regression of a spherical distribution.

Needlets: Needlets are a new generation of spherical

wavelets [33] and have desirable localization capabilities

in both spatial and frequency domains. Narcowich et al.

[30] first introduces needlets in the Functional Analysis lit-

erature, and Baldi et al. [1] further analyses the statistical

properties of needlets. Due to the good localization prop-

erty in the multipole and pixel spaces, needlets have been

widely applied to the research of Cosmic Microwave Back-

ground [32, 27].

The aforementioned works estimate lighting in either

frequency domain or spatial domain which is insufficient

to capture the complex illumination in real scenes. Addi-

tionally, most existing works regress the illumination with a

naive L2 loss or its variant which struggles to regress high

frequency information and often introduces blurs. We intro-



duce needlet basis for lighting representation which allows

regression of illumination in both frequency and spatial do-

mains jointly. A novel spherical transport loss is proposed

to achieve stable and accurate regression of needlet coeffi-

cients. Details on lighting representation, spherical trans-

port loss are to be presented in the ensuing sections.

3. Proposed Method

The proposed NeedleLight estimates illumination by re-

gressing needlet coefficients from a single image as illus-

trated in Fig. 2. A novel spherical transport loss is designed

to achieve stable and effective regression of needlet coef-

ficients. The following subsections describe how needlets

and spherical transport loss work together for accurate and

robust lighting estimation.

3.1. Needlets based Lighting Representation

Needlets [1, 30] are a new type of spherical wavelets that
has been successfully used in microwave signal analysis.
They can be localized at a finite number of frequencies, and
decay quasi-exponentially fast away from the global maxi-
mum. Thus they enjoy good localization properties in both
frequency and spatial domains. As described in [1], a signal
I(x) (e.g. lighting signals of interest in this research) at a
given frequency j ∈ N can be represented by the spheri-
cal needlets basis ψjk(x) and the needlet coefficients βjk as
follows:

ψjk(x) =
√

λjk

⌊Bj+1⌋
∑

l=⌈Bj−1⌉

b(
l

Bj
)

l
∑

m=−l

Ylm(ξjk)Y lm(x)

βjk =
√

λjk

∞
∑

l=0

b(
l

Bj
)

l
∑

m=−l

almYlm(ξjk)

(1)

where x ∈ S
2, ξjk and λjk are pre-defined cubature points

that spread over the unit sphere as shown in Fig. 3, and the

associated cubature weights, respectively, b(·) is a window

function, B is a free parameter larger than 1, Ylm is spher-

ical harmonic function with degree l and order m, alm is

the corresponding spherical harmonic coefficients, Y lm is

the complex conjugation of Ylm. ξjk represents the spatial

location of needlet basis ψjk, thus the needlet coefficients

are spatially localized on the unit sphere. The signal I(x)
can be reconstructed via I(x) =

∑

j,k βjkψjk(x).

Compared with SH, needlets have compact supports for

the localization in spatial domain. As a result, they can

easily and parsimoniously represent signals over the unit

sphere that exhibits local sharp peaks or valleys, which are

commonly presented in HDR illumination maps. Conse-

quently, needlets serve as a more suitable basis for the rep-

resentation of illumination maps.

3.2. Sparse Needlets

A signal is said to be sparse if it can be reconstructed

with only a small amount of basis functions. An illumi-

nation map consists of several dominant light sources with

high radiance energy and an ambient residual. The light

sources are obviously sparse under the needlet basis while

the ambient component is not. For the lighting estimation,

the reconstruction of dominant light sources is more signifi-

cant than the reconstruction of the ambient component espe-

cially in high frequency sections. Besides, there are dozens

of needlet coefficients in high frequency section (252 coeffi-

cients for jmax=3), most of which are redundant parameters

of ambient. Those redundant parameters will severely dis-

turb the regression of principal light sources and lead to dif-

fuse illumination (or low frequency illumination) which is

undesired for relighting. Thus we deduce an optimal sparse

function for needlets to separate the principle coefficients of

light sources from the redundant ambient component.

We derive the sparse function from a Bayesian perspec-

tive and form the problem as a maximum posterior estima-

tor. Normally, we assume that the needlet coefficients of

light sources s follows Laplace distribution prior as Laplace

prior is well adapted to model sparse signals [4], which is

also proved in [12]. The needlet coefficients of ambient

can be ideally treated as a Gaussian distribution [26]. The

needlet coefficients β of the illumination map can thus be

modelled as:

β = s
︸︷︷︸

light sources

+ φ
︸︷︷︸

ambient

+ η
︸︷︷︸

noise

(2)

where s denotes the needlet coefficients of sparse light

sources which follow Laplace distribution, φ denotes the

needlet coefficients of ambient which is a Gaussian distri-

bution, and η denotes noises that follow a Gaussian distri-

bution. According to Vansynge et al. [36], the Bayesian

formulation of the problem can be written as:

P (s|β) ∝ P (s)L(β|s)

L(β|s, φ) = N(β;φ+ s,Mη)
(3)

where Mη denotes the covariance matrices of the noise. As
φ follows Gaussian distribution, we can derive:

L(β|s) =

∫

...

∫

L(β|s, φ)P (φ)dφ ∝

exp

[

−
1

2
βTM−1

η β + sTM−1

η β −
1

2
sTM−1

η s

]

· exp

[

1

2
(M−1

η β −M−1

η s)T (M−1

η +M−1

φ
)(M−1

η β −M−1

η s)

]

(4)

where Mφ denotes the covariance matrices of the Gaussian

distribution φ. As P (s) follows the Laplace distribution
namely P (s) ∝ exp [−λ||s||], the maximum posterior esti-
mator is obtained by maximizing P (s|β) = L(β|s) ∗ P (s).
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Figure 2. The architecture of the proposed NeedleLight: We introduce sparse needlets to represent lighting. The frequency bands in Needlet

Coefficients are denoted as j = 1, · · · , n. The needlet coefficients in each frequency band are spatially localized on a set of Cubature Points

on the unit sphere (illustration for j = k only). For stable lighting regression, we design a spherical transport loss to capture the divergence

between the predicted needlet coefficients (Prediction) and the ground-truth coefficients (Ground Truth). The values of needlet coefficients

are illustrated by color bars (only draw 5 for illustration).

Cubature Points on Sphere Cubature Points on Panorama

Figure 3. The visualization of cubature points (jmax=3) on sphere

and panorama. The red, green and blue points denote the cuba-

ture points of frequency bands from low to high frequency, namely

j=1, j=2 and j=3 respectively.

We take the partial derivative with respect to s:

∂s(−log(P (s|β))) = −(Mη +MηM
−1

φ
Mη)

−1s+M−1

η s

+ (Mη +MηM
−1

φ
Mη)

−1β −M−1

η β + λ∂s||s||
(5)

By making ∂s(−log(P (s|β))) = 0, the following solution

(or sparse function) can thus be derived:

s = β−
[

M−1
η − (Mη +MηM

−1
φ Mη)

−1
]
−1

λ∂s||s|| (6)

which is a soft thresholding operator with threshold

(M−1
η − (Mη +MηM

−1
φ Mη)

−1)λ. More details about the

derivation of the sparse function are provided in the supple-

mental file.

We apply the sparse function largely to the high-

frequency needlet coefficients so as to shrink the redundant

coefficients of the ambient component. The sparse needlets

provide sparse representation of illumination maps, which

is desirable for the regression of light sources by using the

proposed spherical transport loss to be described in the fol-

lowing subsection.

3.3. Spherical Transport Loss

Different from spherical harmonics, needlet coefficients

are spatially localized in a unit sphere. A simple MSE loss

cannot utilize the spatial information. Besides, as an under-

constrained task, the optimization in lighting estimation is

severely challenging since it aims to recover the environ-

ment lighting from all directions based on a single scene

image with a limited field of view. Thus the training of

lighting estimation models struggles with the regression of

high frequency information.

In this work, we propose a novel Spherical Transport

Loss (STL) to achieve the stable and effective lighting re-

gression. Because the needlet coefficients are spatially lo-

calized on the unit sphere as specified by cubature points,

we treat the regression of needlet coefficients as an Unbal-

anced Optimal Transport (UOT) [22, 8] problem on the unit

sphere. Intuitively, UOT computes the cost for transport-

ing a measure distributed on a space to another measure

of possibly different total masses. As the needlet coeffi-

cients may contains negative values, we take the natural ex-

ponent of them before deriving the spherical transport loss.

Then we can define two sets of needlet coefficients repre-

sented by two positive vectors a = (a1, ·, an) ∈ R
n
+ and

b = (b1, · · · , bn) ∈ R
n
+ and their spatial layouts are speci-

fied by cubature points on the unit sphere. A distance matrix

C and a transportation plan matrix P can thus be derived,

where each entry Cij in C gives the cost of moving point ai
to point bj which can be defined by radian distance between

points on the unit sphere, and Pij in P represents the prob-

ability of assigning a point ai to a point bj . The regularized

UOT problem (namely STL) can thus be defined as follows:

min
P

[

〈C,P 〉+ τKL(P ·~1||a) + τKL(~1 · P ||b)− γH(P )
]

(7)

where τ and γ are regularization parameters, KL is the

KerKullback-Leibler Divergence, H(P ) is the entropic reg-

ularization for efficient approximation of original UOT



A

A

E′ GT

E

E
1

E
3

E
5

E
1

E
3

E
5

E
1

E
2

E
4

E
5

E
3

E
1

E
3

E
5

E
1

E
2

E
4

E
5

E
3

(a)

With Auxiliary PointsW/o Auxiliary Points

(b) (c)

Figure 4. (a) The process to achieve sparse transportation plan through auxiliary points. E and GT are the estimated needlet coefficients

and the ground truth, respectively. ‘A’ denotes the auxiliary point. E′ denotes the predicted coefficients extended with auxiliary points. The

connection between E′ and GT signifies the resulting transportation plan. (b) Transportation plans for the needlet coefficients (j=1) w/o

and w/ auxiliary points, respectively. (c) The sparsity and error of transportation plan matrix with different percentage of auxiliary points.

problem [8]. The regularized UOT can be solved by

Sinkhorn iteration [10].

To construct clear and sharp instead of diffuse (i.e., low

frequency) light sources, we expect the transportation plan

to be sparse. Otherwise the diffuse light sources will result

in weak shading and shadow effects as presented in Garon

et al. [15] of Fig. 6. Besides, the dimension of output

layer increases quickly when the frequency of needlets be-

comes large (252 needlet coefficients when jmax = 3). We

propose an auxiliary point strategy to achieve sparse trans-

portation plan and reduce the dimension of output layer.

Auxiliary points are assigned with small value (we select
1

(number of coefficients) ) and 0 cost for transport, which can

be used for absorbing unused probability mass in cases of

partial transport. As shown in Fig. 4(a), we only estimate

partial needlet coefficients (E), and then use the auxiliary

points to replace other needlet coefficients to obtain a new

set of coefficients (E′). After obtaining the optimal trans-

port between E′ and the ground truth GT, we can extract a

sparse transportation plan by removing the connection with

the auxiliary points. The two samples in Fig. 4(b) show

the transportation plan matrix for the needlet coefficients

(j = 1) with and without auxiliary points, respectively. Fig.

4(c) shows the sparsity and error of the transportation plan

matrix (n× n) with different percentage of auxiliary points

(The evaluation metrics for the sparsity and error of trans-

portation plan are described in [3]). When more auxiliary

points are used, the sparsity of the transportation matrix in-

creases but the error also increases as shown in Fig. 4 (c).

As a trade-off, we select 66% of coefficients as auxiliary

points.

Using spherical transport loss for needlet coefficients re-

gression has two clear advantages. First, it makes the re-

gression sensitive to the global geometry, thus effectively

penalizing predicted activation that is far away from the

ground truth distribution. Second, it can preserve the high

frequency information during training with the proposed

auxiliary points.

Evaluation Metric: Lighting estimation has been

widely evaluated by using root mean square error (RMSE)

and scale-invariant RMSE (si-RMSE) that measure the stan-

dard deviation of residuals of the rendered images. RMSE

mainly evaluates the estimated lighting intensity, and si-

RMSE focuses more on the evaluation of lighting posi-

tions. In addition, lighting estimation has also been eval-

uated by using Amazon Mechanical Turk (AMT) that per-

forms crowdsourcing user study for subjective assessment

of empirical realism of rendered images.

Existing metrics evaluate estimated lighting largely by

applying them to the rendered objects. Thus the perfor-

mance of an estimation model is highly affected by test set-

tings such as materials and 3D shape of the rendered ob-

jects. Based on the proposed spherical transport loss, we

design a spherical transport distance (STD) metric that di-

rectly evaluates the optimal transport distance between the

predicted illumination map and the ground-truth map on the

unit sphere. The only difference from STL is that STD dis-

cards the auxiliary point strategy. The proposed STD highly

simplifies the evaluation procedure and provides concise yet

effective evaluations regarding to the lighting color, lighting

intensity, and lighting position jointly.

Gray Diffuse Matte Silver Mirror Silver

Figure 5. The scene for quantitative evaluations consists of three

spheres with diffuse gray, matte silver and mirror silver materials.



Table 1. Comparison of NeedleLight with several state-of-the-art lighting estimation methods: The evaluation metrics include the widely

used RMSE, si-RMSE, AMT, and our proposed STD. D, S, M denote a diffuse, a matte silver and a mirror material of the rendered objects,

respectively.

Gardner et al. [14] Gardner et al. [13] Li et al. [20] Garon et al. [15] NeedleLight

Metrics D S M D S M D S M D S M D S M

RMSE 0.13 0.16 0.18 0.06 0.10 0.15 0.21 0.23 0.26 0.18 0.20 0.24 0.07 0.07 0.09

si-RMSE 0.15 0.15 0.17 0.07 0.09 0.12 0.19 0.21 0.23 0.21 0.24 0.26 0.05 0.06 0.08

AMT 28% 23% 21% 34% 33% 30% 28% 27% 23% 29% 26% 24% 41% 39% 36%

STD 6.84 5.52 7.01 7.14 4.21

Gardner et al. 2017 OursGardner et al. 2019Garon et al. 2019Li et al. 2019 Ground Truth

Figure 6. Visual comparison of NeedleLight with state-of-the-art lighting estimation methods: With the illumination maps predicted by

different methods (at bottom-right corner of each rendered image), the rendered virtual objects demonstrate different lighting intensity,

color, shadow and shade.

4. Experiments

4.1. Dataset and Implementation

We evaluate NeedleLight by using the Laval Indoor HDR

Dataset [14] that consists of 2,100 HDR panoramas taken in

a variety of indoor environments. Similar to [14], we extract

eight limited field of view crops from each panorama which

produces 19,556 images as used in our experiments. The

image warping operation as described in [14] is applied to

the panoramas. We apply the proposed sparse needlets with

jmax = 3 to extract needlet coefficients as the ground truth

for training. Similar to [13, 15], DenseNet121 is used as the

backbone network and produces a 4096-dimensional latent

vector which is further forwarded to a fully-connected layer

with 1024 units. Three separate output layers are added to

regress needlet coefficients in frequency bands j = 1, 2, 3.

In the experiment, we randomly select 200 images as testing

set and the rest for training set. All the objects are rendered

with Blender [9].

The proposed NeedleLight is implemented by the Py-

Torch framework. The Adam is adopted as optimizer which

employs a learning rate decay mechanism (initial learning

rate is 0.001). The network is trained in 100 epochs with

a batch size of 64. In addition, the network training is per-

formed on two NVIDIA Tesla P100 GPUs with 16GB mem-

ory.

4.2. Quantitative Evaluation

We compare NeedleLight with a number of state-of-the-

art lighting estimation methods including Garon et al. [15]

that estimates lighting in frequency domain and Gardner et

al. [14, 13] and Li et al. [20] that estimate lighting in spa-

tial domain. To perform quantitative evaluations, we create

three spheres with gray diffuse, matte silver and mirror sil-

ver materials for evaluation as shown in Fig. 5, which is

consistent with the evaluation setting in [19]. Then we ren-

der 300 images of objects (100 images for each material) by

using the illumination maps that are predicted from testing

set by each compared method. Table 1 shows experimental

results by using 4 evaluation metrics as described in Evalu-

ation Metrics, where D, S and M denote a diffuse, a matte

silver and a mirror material of the objects to be rendered,

respectively. The AMT user study is conducted by show-

ing two images rendered by the ground truth and one of



the methods in Table 1 to 20 users who will pick the more

realistic image. The score is the percentage of images ren-

dered by the method that is deemed as more realistic than

the ground-truth rendering.

We can observe that NeedleLight outperforms other

methods in most cases under different evaluation metrics

and materials as it allows regression in frequency and spatial

domain jointly. The only exception is for diffuse material by

[13] while evaluated using RMSE, largely because the pa-

rameterization in Gardner et al. [13] simplifies the scene il-

lumination in spatial domain to achieve accurate prediction

of light intensity while diffuse material is largely affected

by light intensity and RMSE is most sensitive to light inten-

sity. Gardner et al. [14] predicts illumination maps directly

by a two-stage training strategy. As an under-constrained

problem, the direct generation methods like Gardner et al.

[14] tend to over-fit the training set and present worse gen-

eralization performance. Besides, both Gardner et al. [14]

and Gardner et al. [13] estimate lighting in spatial domain

which cannot recover frequency information and tends to

generate inaccurate shading and shadow that are largely

measured by si-RMSE. Garon et al. [15] recovers light-

ing in frequency domain by regressing the SH coefficients,

which tend to capture global instead of localized lighting.

Thus Garon et al. [15] struggles to regress accurate lighting

position and recover high frequency information. Li et al.

[20] adopts spherical Gaussian functions to reconstruct illu-

mination in spatial domain, thus it cannot recover accurate

illumination frequency. Besides, it uses a masked L2 loss to

preserve high frequency information though it cannot solve

the missing of high frequency information essentially as il-

lustrated in Fig. 6. Instead, our proposed spherical transport

loss with auxiliary points improves the regression of high

frequency information significantly.

In addition, we can observe that the performance of the

state-of-the-art methods is not consistent under different

evaluation metrics. For example, Li et al. [20] outperforms

Garon et al. [15] in si-RMSE but the situation becomes

the other way around in RMSE. The divergence of different

metrics makes it hard to provide consistent evaluations. The

proposed spherical transport distance (STD) instead pro-

vides relatively consistent and comprehensive evaluations

in light intensity, color, position, etc. as shown in Table 1.

4.3. Qualitative Evaluation

We also compare NeedleLight with four state-of-the-art

lighting estimation methods qualitatively. we design 25 3D

scenes with objects for insertion and render them with the

predicted illumination maps. Fig. 6 shows several rendered

images and the predicted illumination maps. We can ob-

serve that NeedleLight predicts realistic illumination maps

with plausible light sources, thus producing realistic ren-

dering with clear and accurate shade and shadows that are

Figure 7. Object relighting on a variety of photos from the In-

ternet. In all cases, light estimation is performed completely au-

tomatically by our model. The predicted illumination maps are

utilized to relight the virtual objects with Blender [9]. More ren-

dering samples and the analysis of spatially-varying rendering are

available in supplementary file.

very close to the ground truth. As a comparison, the illumi-

nation maps predicted by Gardner et al. [14] and Gardner

et al. [13] tend to present clearly higher illumination fre-

quency than the ground truth, largely because they recover

illumination in spatial domain without explicitly taking fre-

quency information into account. Garon et al. [15] and Li et

al. [20] only predict illumination of low frequency, thus the

produced renderings present very weak shade and shadow

effects as illustrated in Fig. 6.

Besides the testing set, we also validate the proposed

method on natural images collected from the Internet as

shown in Fig. 7. The proposed method achieves accurate

estimation of scene illumination, thus the 3D objects can

be embedded into the images with real shading and shadow

effects. We also include the analysis of spatially-varying

illumination prediction in the supplementary file.

4.4. Ablation Study

We further evaluate NeedleLight by developing four

NeedleLight variants as listed in Table 2, including a base-

line model which regress spherical harmonic coefficients

with L2 loss (SH+L2), regressing original needlet coeffi-

cients with L2 loss (SN+L2), regressing needlet coefficients



Table 2. Ablation study of the proposed NeedleLight: SH denotes using spherical harmonics for representation; SN denotes using spherical

needlets for representation; ST denotes applying the derived soft thresholding function to needlet coefficients; L2 and STL denotes regress-

ing coefficients with L2 loss and spherical transport loss; SN+ST+L2+STL denotes standard NeedleLight with sparse needlets which are

regressed with both L2 and spherical transport loss.

Models
RMSE si-RMSE AMT STD

D S M D S M D S M -

SH+L2 0.19 0.20 0.25 0.22 0.24 0.28 23% 21% 18% 7.14

SN + L2 0.14 0.14 0.16 0.11 0.14 0.15 33% 31% 28% 4.93

SN+ST+L2 0.11 0.12 0.14 0.09 0.09 0.13 34% 32% 30% 4.74

SN+ST+STL 0.10 0.11 0.13 0.07 0.10 0.12 37% 34% 32% 4.51

SN+ST+L2+STL 0.07 0.07 0.09 0.05 0.06 0.08 41% 39% 36% 4.21

Table 3. Ablation studies over different bases including spher-

ical harmonics (SH), spherical gaussian (SG), spherical distribu-

tion (SD), Haar, spherical needlets (SN). HT and ST denote ap-

ply hard thresholding and the derived soft thresholding functions

to the spherical needlet coefficients. jmax denotes the order of

needlets for representation. SN(jmax=3)+ST is the standard set-

ting of NeedleLight.

Models L2 L2 + STL

SH 7.14 7.13

SG 6.01 5.74

SD 5.75 5.54

Haar 6.07 5.83

SN (jmax=1) 7.52 7.18

SN (jmax=2) 6.71 6.20

SN (jmax=4) 5.37 4.96

SN(jmax=3) 5.32 4.93

SN(jmax=3)+HT 4.92 4.51

SN(jmax=3)+ST 4.74 4.21

after applying soft thresholding (namely sparse needlets)

with L2 loss (SN+ST+L2), regressing sparse needlets co-

efficients with spherical transport loss (SN+ST+STL). The

standard NeedleLight regresses spares needlets with both

L2 and spherical transport loss (SN+ST+L2+STL). Sim-

ilar to the setting in Quantitative Evaluation, we apply

the five variants and the standard NeedleLight to render

300 images with 15 objects of different materials. As Ta-

ble 2 shows, using needlets for illumination representation

(SN+L2) helps to achieve better lighting estimation com-

pared with spherical harmonics function (SH+L2). In ad-

dition, the performance of SN+ST+L2 is improved clearly

as sparse needlet coefficients helps the regression of light

sources significantly by the zero setting of redundant coeffi-

cients. Additionally, the standard SN+ST+L2+STL outper-

forms SN+ST+L2 and SN+ST+STL, demonstrating the L2

and the proposed STL are complementary for the regression

of needlet coefficients.

We also study effect of thresholding function and differ-

ent orders of needlets and compare spherical needlets (SN)

with other basis functions for illumination representation

such as spherical harmonics (SH), spherical gaussian (SG),

spherical distribution (SD) [?] and Haar [28] as shown in

Table 3. We followed the experimental setting as in Ta-

ble 2 and measure the proposed STD as the evaluation met-

ric. The number of coefficients of SH, SG, SD and Haar

are set to be consistent with spherical needlets with 3 or-

ders (about 250 coefficients). As Table 3 show, needlets

SN(jmax=3) outperforms other representation bases when

regressing with both L2 loss and spherical transport loss.

Compared with spherical gaussian, spherical distribution

and spherical harmonics functions, needlets enable rep-

resentation in both spatial and frequency domains, thus

achieving accurate regression in both domains. Compared

with other wavelets such as Haar, needlets is a new gen-

eration of spherical wavelets and is more suitable for the

representation of spherical image with sharp local peak

valleys which are commonly presented in HDR illumina-

tion map. Regressing spherical harmonic coefficients with

spherical transport loss doesn’t improve the performance as

there is no spatial information in spherical harmonic coef-

ficients. For spherical gaussian, spherical distribution and

Haar, the performance with the spherical transport loss in-

cluded is clearly improved as the corresponding coefficients

are spatially localized, which demonstrates the effective-

ness of the proposed spherical transport loss. Further, the

prediction performance drops when jmax=1,2 are used, and

increasing the order to jmax=4 doesn’t improve the perfor-

mance. We conjecture that the larger number of parame-

ters with jmax=4 affects the regression accuracy negatively.

Besides, the performance of SN(jmax=3)+ST outperforms

SN(jmax=3)+HT, demonstrating the superiority of the de-

rived soft thresholding function.

5. Conclusions

This paper presents NeedleLight, a lighting estimation

model that introduces needlet basis for illumination repre-

sentation and prediction. In NeedleLight, we deduce an op-



timal thresholding function from Bayesian framework for a

sparse representation in terms of needlet basis. To tackle

the regression of needlet coefficients with spatial localiza-

tion, a novel spherical transport loss with auxiliary points

is designed which performs regression by minimizing the

discrepancy between two spherical distributions. Both the

quantitative and qualitative experiments show that Needle-

Light is capable of predicting illumination accurately from a

single indoor image. We will continue to investigate needlet

basis for more efficient illumination representation and ex-

plore optimal transport for better network training.
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