1. Gabatarwa & Bayyani
Zanen kama-da-gaskiya a cikin Ƙarfafa Gaskiya na Wayar Hannu (AR) yana da ƙuntatawa ta asali saboda rashin ingantaccen bayanin haske na kowane bangare a kowane wurin zane cikin sauri. Na'urorin wayar hannu na yanzu ba za su iya ɗaukar cikakken hoto na 360° daga wurin da ake son sanya abu na zahiri ba. Yin amfani da bayanan haske daga wurin kallon mai amfani yana haifar da zane mara inganci, wanda ba ya canzawa a sarari, wanda ke karya shiga cikin labarin.
Tsarin Xihe yana gabatar da sabon mafita ta hanyar amfani da ci gaban hangar nesa 3D na wayar hannu—kamar na'urar LiDAR da na'urori masu zurfin gani da aka haɗa—don kimanta hasken muhalli. Shi ne tsarin taimakon gefe wanda aka tsara don samar da ingantaccen kiyasin haske mai canzawa a sarari cikin sauri (har zuwa kusan 20ms), yana ba da damar samun ƙwarewar AR mai inganci akan na'urorin masu amfani.
2. Tsarin Xihe
Tsarin ginin Xihe ya dogara ne akan samfurin abokin ciniki-gefe-ukaɗa, yana inganta kowane ɓangare don ƙayyadaddun ƙuntatawa na AR na wayar hannu: ƙarancin lissafi akan na'ura, jinkirin hanyar sadarwa, da buƙatar kama-da-gaskiya na fahimta.
2.1 Tsarin Gini na Asali & Tsarin Aiki
Tsarin aiki ya ƙunshi: 1) Na'urar wayar hannu tana ɗaukar gungu matsakaici (point cloud) na muhalli ta amfani da na'urar zurfin gani (misali, LiDAR). 2) Sabon algorithm na zaɓi yana matsawa wannan bayanan. 3) Ana aika bayanan da aka sarrafa zuwa ukaɗar gefe da ke ɗauke da samfurin koyon zurfi don kiyasin haske. 4) Ana mayar da ƙayyadaddun haske da aka kiyasta (misali, ƙididdiga na Spherical Harmonics) zuwa na'urar don zana abubuwa na zahiri.
2.2 Sabon Zabin Gungu Matsakaici (Point Cloud Sampling)
Wani sabon abu mai mahimmanci shine dabarar zaɓi mai inganci wacce aka samo daga bincike na zahiri na bayanan cikin gida na 3D. Maimakon sarrafa cikakken gungu matsakaici mai yawa, Xihe yana zaɓar ɓangaren maki da suka fi dacewa don kiyasin haske (misali, maki akan saman da ke da takamaiman ma'auni ko kaddarorin albedo). Wannan yana rage yawan bayanan da ake ɗauka sosai ba tare da asarar inganci mai mahimmanci ba.
2.3 Hanyar GPU akan Na'ura
Don rage jinkiri, ana yin farkon sarrafa gungu matsakaici (tacewa, daidaitawa, zaɓi) akan GPU na na'urar wayar hannu. Wannan hanyar da aka keɓance tana tabbatar da cewa babban aikin sarrafawa kafin aikawa ba zai zama cikas ba.
2.4 Taimakon Gefe don Fahimta & Ingantacciyar Hanyar Sadarwa
Samfurin koyon zurfi mai rikitarwa don fahimtar haske daga tsarin 3D yana gudana akan ukaɗar gefe. Xihe yana amfani da tsarin ɓoyayyen bayanai na musamman don ƙara matsawa bayanan gungu matsakaici da aka zaɓa kafin aikawa, yana rage jinkirin hanyar sadarwa da amfani da bandeji.
2.5 Kunna da Dacewa & Daidaiton Lokaci
Xihe ya haɗa da dabarar kunna mai hankali. Ba ya yin sabon kiyasin haske don kowane firam. A maimakon haka, yana kimanta lokacin da yanayin haske ko matsayin mai amfani/maimaitawa ya canza sosai har ya cancanci sabuntawa. Bugu da ƙari, yana ba da hanyoyin tabbatar da daidaiton lokaci tsakanin ƙiyasin, yana hana ƙyalli ko canje-canje masu tsangwama a cikin yanayin AR da aka zana.
3. Aiwarta da Cikakkun Bayanai na Fasaha
3.1 Tushen Lissafi
Ana wakiltar haske sau da yawa ta amfani da Spherical Harmonics (SH). Matsalar kiyasin ta asali za a iya tsara ta azaman nemo ƙididdiga na SH $\mathbf{l}$ waɗanda suka fi bayyana hasken da aka lura $B(\mathbf{n})$ a maki na saman tare da ma'auni $\mathbf{n}$, idan aka ba da albedo $\rho$:
$B(\mathbf{n}) = \rho \int_{\Omega} L(\omega) (\mathbf{n} \cdot \omega)^+ d\omega \approx \rho \sum_{i} l_i Y_i(\mathbf{n})$
Inda $L(\omega)$ shine hasken da ke faruwa, $Y_i$ ayyukan tushe ne na SH, kuma $(\cdot)^+$ shine abin da aka matse. Cibiyar sadarwar jijiya ta Xihe tana koyon taswira $f_\theta$ daga gungu matsakaici da aka zaɓa $P$ zuwa waɗannan ƙididdiga: $\mathbf{l} = f_\theta(P)$.
Dabarar zaɓi tana nufin zaɓar maki $p_i \in P$ waɗanda suka ƙaru da ƙimar bayanai don warware wannan matsalar juyawa, sau da yawa suna mai da hankali kan maki tare da alamun da ba na Lambertian ba ko takamaiman alaƙar lissafi.
3.2 Tsarin Bincike & Misalin Lamari
Yanayi: Sanya bututun tukwane na zahiri akan teburin katako a cikin ɗakin zama tare da taga a gefe ɗaya da fitila a ɗayan.
- Samun Bayanai: LiDAR na iPhone yana binciken ɗakin, yana samar da gungu matsakaici mai yawa (~500k maki).
- Sarrafa akan Na'ura (GPU): Hanyar Xihe tana tace hayaniya, daidaita gajimare, kuma tana amfani da algorithm ɗin zaɓi. Yana gano kuma yana riƙe maki da farko akan saman tebur (don hasken bounci kai tsaye), yankin taga (tushen haske na farko), da inuwar fitila. An rage gajimaren zuwa ~5k maki na wakilci.
- Fahimtar Gefe: Ana aika wannan gungu matsakaici da aka matsawa, wanda aka ɓoye, zuwa gefe. Cibiyar sadarwar jijiya tana nazarin rarraba sararin samaniya na 3D da kuma yuwuwar kaddarorin kayan (wanda aka fahimta daga lissafi/mahallin) don kimanta saitin ƙididdiga na Spherical Harmonics na oda na biyu wanda ke bayyana hasken kowane bangare a wurin bututun.
- Zane: Aikace-aikacen AR akan wayar yana amfani da waɗannan ƙididdiga na SH don inuwa da bututun zahiri. Gefen da ke fuskantar taga yana bayyana mai haske kuma ana iya ganin abubuwan da suka fi haskakawa, yayin da gefen da ke nesa yana haskakawa a hankali ta hanyar hasken da ke billa daga teburin katako, yana cimma kama-da-gaskiya mai canzawa a sarari.
4. Kimantawa ta Gwaji & Sakamako
Takardar tana kimanta Xihe ta amfani da aikace-aikacen AR na wayar hannu na tunani. Ma'auni suna mai da hankali kan ingancin kiyasin da jinkiri har zuwa ƙarshe.
Jinkirin Kiyasin
20.67 ms
Matsakaici kowace kiyasin
Ingantaccen Ingantaccen
9.4%
Mafi kyau fiye da ma'aunin cibiyar sadarwar jijiya na zamani
Matsawar Bayanai
~100x
Ragewa daga gungu matsakaici na danye
4.1 Ayyukan Inganci
An auna inganci ta hanyar kwatanta hotunan da aka zana na abubuwa na zahiri a ƙarƙashin hasken da aka kiyasta na Xihe da gaskiyar zane ta amfani da taswirorin muhalli da aka sani. Xihe ya fi ma'aunin cibiyar sadarwar jijiya na zamani da 9.4% dangane da ma'aunin kamancen hoto na yau da kullun (mai yiyuwa PSNR ko SSIM). An samo wannan ribar ne saboda sanin tsarin gini na 3D da gungu matsakaici ya bayar, sabanin hanyoyin da suka dogara kawai akan hotunan kamara na 2D.
4.2 Jinkiri & Ingantacciyar Aiki
Hanyar har zuwa ƙarshe tana samun matsakaicin jinkiri na 20.67 milliseconds kowace kiyasin haske, cikin kasafin kuɗi don AR cikin sauri (yawanci 16ms don 60 FPS). Wannan yana samuwa ta hanyar ingantaccen sarrafawa akan na'ura da ingantacciyar hanyar sadarwa. Hanyar kunna da dacewa tana ƙara rage yawan aikin lissafi na kowane firam.
4.3 Taƙaitaccen Sakamako Mai Muhimmanci
- Ya Tabbatar da Yiwuwa: Ya nuna cewa ingantaccen kiyasin haske na tushen hangar nesa 3D cikin sauri yana yiwuwa akan dandamalin wayar hannu.
- Ya Nuna Fa'idar 3D: Ya nuna fa'idar inganci a fili fiye da hanyoyin da suka dogara da hoto na 2D ta hanyar amfani da mahallin lissafi.
- Ya Tabbatar da Ƙirar Tsarin: Tsarin taimakon gefe, ingantacciyar hanyar tana cika ƙayyadaddun buƙatun jinkiri.
5. Bincike Mai Zurfi & Hangen Nesa na Kwararru
Hangen Nesa na Asali: Xihe ba wani ƙarin ci gaba ne kawai a cikin zanen jijiya ba; yaudara ne na matakin tsarin wanda a ƙarshe ya haɗa tazarar tsakanin ka'idar zane mai zurfi da gaskiyar tauraron kayan aikin wayar hannu. Hangen nesa na asali shine cewa sabon yaduwar na'urori masu auna nesa 3D na wayar hannu (LiDAR) ba don auna ɗakuna kawai ba ne—shi ne maɓalli da ya ɓace don warware matsalar "haske daga ko'ina" wacce ta addabi AR na wayar hannu tsawon shekaru goma. Yayin da ayyuka kamar NeRF: Wakiltar Yanayi azaman Filayen Haske na Jijiya don Haɗin Kallo (Mildenhall et al., 2020) suka burge da cikakken sake gina yanayi, ba su da iyaka ga amfani da wayar hannu cikin sauri. Xihe yana guje wa wannan tarko da hankali ta hanyar rashin ƙoƙarin sake gina komai; a maimakon haka, yana amfani da bayanan 3D azaman bayanin lissafi mai yawa, don ƙuntata matsalar kiyasin haske, wanda ya fi dacewa.
Tsarin Hankali: Hankalin takardar yana da gamsarwa: 1) Kama-da-gaskiya yana buƙatar haske mai canzawa a sarari. 2) Wayoyin hannu ba za su iya ɗauka kai tsaye ba. 3) Amma yanzu suna iya ɗaukar lissafi na 3D cikin arha. 4) Lissafi yana nuna ƙuntatawa na haske (misali, kusurwa mai duhu da kusa da taga). 5) Don haka, yi amfani da cibiyar sadarwar jijiya don koyon taswirar "lissafi → haske". 6) Don yin sauri cikin sauri, inganta kowane mataki sosai: zaɓi bayanan 3D, tura babban fahimta zuwa gefe, kuma kada a yi kiyasin sai dai idan ya cancanta. Wannan kwararar daga ma'anar matsalar zuwa tsarin aiki yana da tsabta musamman.
Ƙarfi & Kurakurai: Babban ƙarfinsa shine aikin aiki. Kunna da dacewa da daidaiton lokaci alamun injiniya ne don samfurin gaskiya, ba kawai nunin bincike ba. Algorithm ɗin zaɓi yana da wayo, 'ya'yan itace masu sauƙi waɗanda ke haifar da riba mai yawa. Duk da haka, tsarin yana da kurakurai na asali. Ya dogara gaba ɗaya akan ingancin na'urar auna zurfin; aikin a cikin muhalli mara rubutu ko mai haske yana da shakku. Samfurin taimakon gefe yana gabatar da dogaro da hanyar sadarwa, yana haifar da bambancin jinkiri da damuwa game da sirri—tunani aikace-aikacen ƙira na cikin gida na AR yana watsa taswirorin 3D na gidanku zuwa ukaɗa. Bugu da ƙari, kamar yadda aka lura a cikin binciken Microsoft HoloLens, kiyasin haske wani ɓangare ne kawai na wasan guntun haɗin kai; kiyasin kayan duniya na gaskiya yana da mahimmanci daidai don haɗuwa mara tsage, matsalar da Xihe ya kauce.
Hangennesa Masu Aiki: Ga masu bincike, abin da za a ɗauka shine a ƙara ƙarfi kan hanyoyin haɗin gwiwa na lissafi-jijiya. Koyon tsantsa yana da nauyi sosai; lissafi tsantsa yana da sauƙi. Makomar tana cikin tsare-tsare kamar Xihe waɗanda ke amfani da ɗaya don jagorantar ɗayan. Ga masu haɓakawa, wannan takarda ta zama tsari: idan kuna gina aikace-aikacen AR na wayar hannu mai mahimmanci, dole ne yanzu ku ɗauki bayanan na'urar auna nesa 3D azaman shigarwa na farko. Fara ƙirar samfuri tare da APIs na zurfin ARKit/ARCore nan da nan. Ga masu yin guntu, buƙatar ƙarin ƙarfi, injunan jijiya akan na'ura da ingantattun na'urori masu auna zurfin zai ƙara ƙarfi kawai—inganta don wannan hanyar. Xihe ya nuna cewa hanyar zuwa AR mai kama-da-gaskiya na masu amfani ba kawai game da ingantattun algorithms ba ne, amma game da haɗin gwiwar ƙira na algorithms, kayan aiki, da tsarin gini tare.
6. Ayyuka na Gaba & Hanyoyin Bincike
- Kasuwancin AR na Ko'ina: Sanya samfurin zahiri (kayan daki, kayan ado, na'urori) tare da cikakken haɗin haske, yana haifar da ƙimar canji mafi girma a cikin kasuwancin e-commerce.
- Ƙira na Ƙwararru & Hoto: Masu gine-gine da masu ƙira na cikin gida za su iya duba ƙarewa, kayan haske, da kayan daki a wurin da ingantaccen kama-da-gaskiya akan kwamfutar hannu.
- Wasanni & Nishaɗi na Ci Gaba: Wasannin AR na tushen wuri inda haruffa na zahiri da abubuwa suke mu'amala da gaske tare da hasken duniya na zahiri (misali, jefa inuwa daidai ƙarƙashin gajimare masu motsi).
- Hanyoyin Bincike:
- Koyo akan Na'ura: Matsar da cibiyar sadarwar jijiya gaba ɗaya akan na'ura don kawar da jinkirin hanyar sadarwa da batutuwan sirri, ta amfani da NPUs na wayar hannu na gaba.
- Haɗin Kayan & Kiyasin Haske: Faɗaɗa tsarin don kuma fahimci kusan kaddarorin kayan saman (tsantsa, ƙarfe) na muhalli na gaskiya don ƙarin mu'amalar haske mai kama-da-gaskiya.
- Haske Mai Ƙarfi & Inuwa: Tsawaitawa daga hasken muhalli mai tsayi zuwa sarrafa tushen haske mai ƙarfi (misali, kunna/kashe fitila, motsa tocila).
- Haɗin kai tare da Filayen Haske na Jijiya (NeRFs): Yin amfani da ingantacciyar hanyar Xihe don samar da bayanan farko na haske ko farawa don sauri, sake gina kamar NeRF da aka inganta don wayar hannu.
7. Nassoshi
- Zhao, Y., & Guo, T. (2021). Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile Augmented Reality. A cikin Taron Shekara-shekara na 19 na Tsarin Wayoyin Hannu, Aikace-aikace, da Sabis (MobiSys '21).
- Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2020). NeRF: Wakiltar Yanayi azaman Filayen Haske na Jijiya don Haɗin Kallo. A cikin Taron Turai na Fahimtar Kwamfuta (ECCV).
- Google ARCore. Depth API. https://developers.google.com/ar/discover/depth
- Apple. LiDAR Scanner and Depth Framework in iOS. https://developer.apple.com/documentation/arkit/understanding_world_tracking
- Microsoft Research. HoloLens and Environmental Understanding. https://www.microsoft.com/en-us/research/project/hololens/
- Ramamoorthi, R., & Hanrahan, P. (2001). An Efficient Representation for Irradiance Environment Maps. A cikin Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01).